DOI QR코드

DOI QR Code

Colonizing Ability of Pseudomonas fluorescens 2112, Among Collections of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens spp. in Pea Rhizosphere

  • Kim, Sang-Dal (School of Biotechnology, Yeungnam University) ;
  • Fuente, Leonardo De La (Department of Entomology and Plant Pathology, Auburn University) ;
  • Weller, David M. (Department of Plant Pathology, USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University) ;
  • Thomashow, Linda S. (Department of Plant Pathology, USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University)
  • Received : 2011.12.19
  • Accepted : 2012.02.17
  • Published : 2012.06.28

Abstract

Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 genotypes of 2,4-DAPG producers, by phlD restriction fragment length polymorphism (RFLP). The colonizing ability of P. fluorescens 2112 in pea rhizosphere was equal to the well-known pea colonizers, P. fluorescens Q8r1 (genotype D) and MVP1-4 (genotype P), after 6 cycling cultivations for 18 weeks. Four tested 2,4-DAPG-producing Pseudomonas spp. could colonize with about a 96% dominance ratio against total bacteria in pea rhizosphere. The strain P. fluorescens 2112 was as good a colonizer as other Pseudomonas spp. genotypes in pea plant growth-promoting rhizobacteria.

Keywords

References

  1. Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87, J. Bacteriol. 181: 3155-3163.
  2. Espinosa-Urgel, M., A. Salido, and J. L. Ramos. 2000. Genetic analysis of function involved in adhesion of Pseudomonas putida to seed. J. Bacteriol. 182: 2363-2369. https://doi.org/10.1128/JB.182.9.2363-2369.2000
  3. Kloepper, J. W., S. Tuzum, L. Liu, and G. Wei. 1993. Plant growth promoting rhizobacteria as inducer of systemic disease resistance, pp. 156-165. In R. D. Lumsden and J. L. Vaughn (eds.). Pest Management: Biologically Based Technologies. American Chemical Society, Washington DC, WA, USA.
  4. Kloepper, J. W. and C. J. Beauchamp. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38: 1219-1232. https://doi.org/10.1139/m92-202
  5. Landa, B. B., O. V. Marvrodi, J. M. Raaijmarkers, B. B. McSpadden Gardener, L. S. Thomashow, and D. M. Weller. 2002. Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the root of pea plants. Appl. Environ. Microbiol. 68: 3226-3237. https://doi.org/10.1128/AEM.68.7.3226-3237.2002
  6. Landa, B. B., H. A. de Werd, B. B. McSpadden Gardener, and D. M. Weller. 2002. Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere. Phytopathology 92: 129-137. https://doi.org/10.1094/PHYTO.2002.92.2.129
  7. Landa, B. B., D. M. Mavrodi, L. S. Thomashow, and D. M. Weller. 2003. Interaction between strain of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheet. Phytopathology 93: 982-994. https://doi.org/10.1094/PHYTO.2003.93.8.982
  8. Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28: 334-340.
  9. Lee, E. T. and S. D. Kim. 2001. An antifungal substance, 2,4-diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against Phytophthora capcisi. Kor. J. Appl. Microbiol. Biotechnol. 29: 37-42.
  10. Lee, E. T., H. K. Jung, and S. D. Kim. 2003. Pyoveridin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421.
  11. Loper, J. E., C. Haack, and M. N. Schroth. 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato. Appl. Environ. Microbiol. 49: 416-422.
  12. Lugtenberg, B. J. J., L. Dekkers, and G. V. Bloemberg. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461-490. https://doi.org/10.1146/annurev.phyto.39.1.461
  13. Lugtenberg, B., A. J. van der Bij, G. Bloemberg, T. Chin-AWoeng, L. Dekker, L. Kravchenko, et al. 1996. Molecular basis of rhizosphere colonization by Pseudomonas bacteria, pp. 433-440. In G. Stacey, B. Mullin, and P. M. Gresshoff (eds.). Biology of Plant-Microbe Interactions. ISPMB, St. Paul, MN, USA.
  14. Marvrodi, O. V., B. B. McSpadden Gardener, D. V. Mavrodi, R. F. Bonsall, D. M. Weller, and L. S. Thomashow. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91: 35-43. https://doi.org/10.1094/PHYTO.2001.91.1.35
  15. Mazzola, M. and R. J. Cook. 1991. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent Pseudomonads in the wheat rhizosphere. Appl. Environ. Microbiol. 57: 2171-2178.
  16. McSpadden Gardener, B. B., D. V. Mavrodi, L. S. Thomashow, and D. M. Weller. 2000. A rapid polymerase chain reaction-based assay characterizing rhizosphere population of 2,4-diacetylphloroglucinol-producing bacteria. Phytopathology 91: 44-54.
  17. McSpadden Gardener, B. B., K. L. Schroeder, S. E. Kalloger, J. M. Raaijmarkers, L. S. Thomashow, and D. W, Weller. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66: 1939-1946. https://doi.org/10.1128/AEM.66.5.1939-1946.2000
  18. Picard, C., F. Di Cello, M. Ventura, R. Fani, and A. Guckert. 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955. https://doi.org/10.1128/AEM.66.3.948-955.2000
  19. Raaijmakers, J. M. and D. M. Weller. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol. Plant Microbe Interact. 11: 144-152. https://doi.org/10.1094/MPMI.1998.11.2.144
  20. Raaijmakers, J. M., R. F. Bonsall, and D. M. Weller. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470-475. https://doi.org/10.1094/PHYTO.1999.89.6.470
  21. Rattray, E. A., J. I. Prosser, L. A. Glover, and K. Killham. 1995. Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Appl. Environ. Microbiol. 61: 2950-2957.
  22. Redecker, D., I. S. Feder, P. Vinuesa, T. Batinic, U. Schulz, K. Kosch, and D. Werner. 1999. Biocontrol strain Pseudomonas sp. W34: Specific detection and quantification in the rhizosphere of Cucumis sativus with a DNA probe and genotypic characterization by DNA fingerprinting. Z. Naturforsch. 54c: 359-370.
  23. Sanchez-Contreras, M., M. Martin, M. Villacieros, F. O'Gara, I. Bonilla, and R. Rivilla. 2001. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacteriol. 184: 1587-1596.

Cited by

  1. 생물방제균 Pseudomonas fluorescens 2112의 고추 근권정착능과 Quorum-sensing 기능 vol.41, pp.1, 2012, https://doi.org/10.4014/kjmb.1210.10006
  2. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability vol.3, pp.None, 2012, https://doi.org/10.1016/j.crmicr.2021.100094