DOI QR코드

DOI QR Code

Biosequestration, Transformation, and Volatilization of Mercury by Lysinibacillus fusiformis Isolated from Industrial Effluent

  • 투고 : 2011.08.09
  • 심사 : 2012.01.16
  • 발행 : 2012.05.28

초록

In the present study, an efficient mercury-tolerant bacterial strain (RS-5) was isolated from heavy-metalcontaminated industrial effluent. Under shake flask conditions, 97% of the supplemented mercuric chloride was sequestered by the biomass of RS-5 grown in a tryptone soy broth. The sequestered mercuric ions were transformed inside the bacterial cells, as an XRD analysis of the biomass confirmed the formation of mercurous chloride, which is only feasible following the reaction of the elemental mercury and the residual mercuric chloride present within the cells. Besides the sequestration and intracellular transformation, a significant fraction of the mercury (63%) was also volatilized. The 16S rRNA gene sequence of RS-5 revealed its phylogenetic relationship with the family Bacillaceae, and a 98% homology with Lysinibacillus fusiformis, a Gram-positive bacterium with swollen sporangia. This is the first observation of the sequestration and volatilization of mercuric ions by Lysinibacillus sp.

키워드

참고문헌

  1. Altschul, S. F., L. M. Thomas, A. S. Alejandro, Z. Jinghui, Z. Zheng, M. Webb, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Barkay, T. and I. Wagner-Dobler. 2005. Microbial transformations of mercury: Potential challenges and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57: 1-52.
  3. Benson, D. A., I. Karsch-Mizrachi, D. J. Lipmann, J. Ostell, and D. L. Wheeler. 2006. Gen-Bank. Nucl. Acids Res. 34: D16-D20. https://doi.org/10.1093/nar/gkj157
  4. Calos, N. J., C. H. L. Kennard, and R. L. Davis. 1983. The structure of calomel, $Hg_2CI_2$, derived from neutron powder data. Z. Kristallogr. 187: 305-307.
  5. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, et al. 2007. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucl. Acids Res. 35: D169-D172. https://doi.org/10.1093/nar/gkl889
  6. De Siloniz, M. I., L. Balsalobre, C. Alba, M. J. Valderrama, and J. M. Peinado. 2002. Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res. Microbiol. 153: 173-180. https://doi.org/10.1016/S0923-2508(02)01303-7
  7. Dhankher, O. P., Y. Li, and B. P. Rosen. 2002. Engineering tolerance and hyper accumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20: 1140-1144. https://doi.org/10.1038/nbt747
  8. Dudley, K. J., M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  9. Dzairi, F. Z., Y. Zeroual, A. Moutaoukkil, J. Taoufik, M. Talbi, M. Loutfi, et al. 2004. Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Ann. Microbiol. 54: 353-364.
  10. Fitzgerald, W. F., C. H. Lamborg, and C. R. Hammerschmidt. 2007. Marine biogeochemical cycling of mercury. Chem. Rev. 107: 641-662. https://doi.org/10.1021/cr050353m
  11. Jayasankar, D., A. Sarkar, and N. Ramaiah. 2006. Bioremediation of toxic substances by mercury resistant marine bacteria. J. Ecotoxicol. 15: 385-389. https://doi.org/10.1007/s10646-006-0066-4
  12. Joseph, S., P. S. Shanmugha, K. G. Seghal, T. Thangavelu, and B. N. Sapna. 2009. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol. Res. 164: 352-363. https://doi.org/10.1016/j.micres.2007.05.005
  13. Lefebvre, D. D., D. Kelly, and K. Budd. 2007. Biotransformation of Hg(II) by cyanobacteria. Appl. Environ. Microbiol. 71: 243-249.
  14. Liu, J., R. A. Goyer, and M. P. Waalkes. 2008. Toxic effects of metals, pp. 949-950. In C. D. Klassen (ed). Casarett and Doull's Toxicology: The Basic Science of Poisons, 7th Ed. McGraw-Hill, New York
  15. Mendoza-Cozatl, D., H. Loza-Tavera, A. Hernandez-Navarro, and R. Moreno-Sanchez. 2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29: 653-671. https://doi.org/10.1016/j.femsre.2004.09.004
  16. Poulain, A. J., S. M. N. Chadhain, P. A. Ariya, M. Amyot, E. Garcia, P. G. C. Campbell, et al. 2007. Potential for mercury reduction by microbes in the high arctic. Appl. Environ. Microbiol. 73: 2230-2238. https://doi.org/10.1128/AEM.02701-06
  17. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.
  18. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  19. Ung, C. Y., S. H. Lam, M. M. Hlaing, C. L. Winata, S. Korzh, S. Mathavan, and Z. Gong. 2010. Mercury-induced hepatotoxicity in zebra fish: In vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genomics 11: 6-14. https://doi.org/10.1186/1471-2164-11-6
  20. USEPA. 1996. Acid digestion of sediments sludges and soils. Method 3050-B. In: Methods for Chemical Analysis of Water and Wastes. USEPA, Washington, DC.
  21. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  22. Warner, K. A., E. E. Roden, and J. Bonzongo. 2003. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ. Sci. Technol. 37: 2159-2165. https://doi.org/10.1021/es0262939

피인용 문헌

  1. Biosequestration of lead using Bacillus strains isolated from seleniferous soils and sediments of Punjab vol.21, pp.17, 2014, https://doi.org/10.1007/s11356-014-2951-3
  2. Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge vol.12, pp.3, 2012, https://doi.org/10.1007/s13762-013-0484-9
  3. The long‐term adaptation of bacterial communities in metal‐contaminated sediments: a metaproteogenomic study vol.17, pp.6, 2012, https://doi.org/10.1111/1462-2920.12627
  4. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil vol.51, pp.4, 2012, https://doi.org/10.1080/10934529.2015.1109413
  5. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil vol.160, pp.None, 2016, https://doi.org/10.1088/1757-899x/160/1/012077
  6. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine vol.199, pp.22, 2012, https://doi.org/10.1128/jb.00204-17
  7. Screening and Genome Sequencing of Deltamethrin-Degrading Bacterium ZJ6 vol.75, pp.11, 2012, https://doi.org/10.1007/s00284-018-1546-5
  8. Exploring the application of biostimulation strategy for bacteria in the bioremediation of industrial effluent vol.69, pp.5, 2019, https://doi.org/10.1007/s13213-019-1443-6
  9. Spatial Patterns of Selenium and Profiling of Se-Tolerant Bacillus Strains in Shiwalik Foot-Hills vol.37, pp.10, 2020, https://doi.org/10.1080/01490451.2020.1805651
  10. Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents vol.9, pp.None, 2012, https://doi.org/10.7831/ras.9.0_103
  11. Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents vol.9, pp.None, 2012, https://doi.org/10.7831/ras.9.0_103
  12. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review vol.226, pp.None, 2012, https://doi.org/10.1016/j.ecoenv.2021.112863