참고문헌
- Altschul, S. F., L. M. Thomas, A. S. Alejandro, Z. Jinghui, Z. Zheng, M. Webb, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Barkay, T. and I. Wagner-Dobler. 2005. Microbial transformations of mercury: Potential challenges and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57: 1-52.
- Benson, D. A., I. Karsch-Mizrachi, D. J. Lipmann, J. Ostell, and D. L. Wheeler. 2006. Gen-Bank. Nucl. Acids Res. 34: D16-D20. https://doi.org/10.1093/nar/gkj157
-
Calos, N. J., C. H. L. Kennard, and R. L. Davis. 1983. The structure of calomel,
$Hg_2CI_2$ , derived from neutron powder data. Z. Kristallogr. 187: 305-307. - Cole, J. R., B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, et al. 2007. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucl. Acids Res. 35: D169-D172. https://doi.org/10.1093/nar/gkl889
- De Siloniz, M. I., L. Balsalobre, C. Alba, M. J. Valderrama, and J. M. Peinado. 2002. Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res. Microbiol. 153: 173-180. https://doi.org/10.1016/S0923-2508(02)01303-7
- Dhankher, O. P., Y. Li, and B. P. Rosen. 2002. Engineering tolerance and hyper accumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20: 1140-1144. https://doi.org/10.1038/nbt747
- Dudley, K. J., M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Dzairi, F. Z., Y. Zeroual, A. Moutaoukkil, J. Taoufik, M. Talbi, M. Loutfi, et al. 2004. Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Ann. Microbiol. 54: 353-364.
- Fitzgerald, W. F., C. H. Lamborg, and C. R. Hammerschmidt. 2007. Marine biogeochemical cycling of mercury. Chem. Rev. 107: 641-662. https://doi.org/10.1021/cr050353m
- Jayasankar, D., A. Sarkar, and N. Ramaiah. 2006. Bioremediation of toxic substances by mercury resistant marine bacteria. J. Ecotoxicol. 15: 385-389. https://doi.org/10.1007/s10646-006-0066-4
- Joseph, S., P. S. Shanmugha, K. G. Seghal, T. Thangavelu, and B. N. Sapna. 2009. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol. Res. 164: 352-363. https://doi.org/10.1016/j.micres.2007.05.005
- Lefebvre, D. D., D. Kelly, and K. Budd. 2007. Biotransformation of Hg(II) by cyanobacteria. Appl. Environ. Microbiol. 71: 243-249.
- Liu, J., R. A. Goyer, and M. P. Waalkes. 2008. Toxic effects of metals, pp. 949-950. In C. D. Klassen (ed). Casarett and Doull's Toxicology: The Basic Science of Poisons, 7th Ed. McGraw-Hill, New York
- Mendoza-Cozatl, D., H. Loza-Tavera, A. Hernandez-Navarro, and R. Moreno-Sanchez. 2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29: 653-671. https://doi.org/10.1016/j.femsre.2004.09.004
- Poulain, A. J., S. M. N. Chadhain, P. A. Ariya, M. Amyot, E. Garcia, P. G. C. Campbell, et al. 2007. Potential for mercury reduction by microbes in the high arctic. Appl. Environ. Microbiol. 73: 2230-2238. https://doi.org/10.1128/AEM.02701-06
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.
- Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Ung, C. Y., S. H. Lam, M. M. Hlaing, C. L. Winata, S. Korzh, S. Mathavan, and Z. Gong. 2010. Mercury-induced hepatotoxicity in zebra fish: In vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genomics 11: 6-14. https://doi.org/10.1186/1471-2164-11-6
- USEPA. 1996. Acid digestion of sediments sludges and soils. Method 3050-B. In: Methods for Chemical Analysis of Water and Wastes. USEPA, Washington, DC.
- Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
- Warner, K. A., E. E. Roden, and J. Bonzongo. 2003. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ. Sci. Technol. 37: 2159-2165. https://doi.org/10.1021/es0262939
피인용 문헌
- Biosequestration of lead using Bacillus strains isolated from seleniferous soils and sediments of Punjab vol.21, pp.17, 2014, https://doi.org/10.1007/s11356-014-2951-3
- Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge vol.12, pp.3, 2012, https://doi.org/10.1007/s13762-013-0484-9
- The long‐term adaptation of bacterial communities in metal‐contaminated sediments: a metaproteogenomic study vol.17, pp.6, 2012, https://doi.org/10.1111/1462-2920.12627
- Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil vol.51, pp.4, 2012, https://doi.org/10.1080/10934529.2015.1109413
- Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil vol.160, pp.None, 2016, https://doi.org/10.1088/1757-899x/160/1/012077
- Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine vol.199, pp.22, 2012, https://doi.org/10.1128/jb.00204-17
- Screening and Genome Sequencing of Deltamethrin-Degrading Bacterium ZJ6 vol.75, pp.11, 2012, https://doi.org/10.1007/s00284-018-1546-5
- Exploring the application of biostimulation strategy for bacteria in the bioremediation of industrial effluent vol.69, pp.5, 2019, https://doi.org/10.1007/s13213-019-1443-6
- Spatial Patterns of Selenium and Profiling of Se-Tolerant Bacillus Strains in Shiwalik Foot-Hills vol.37, pp.10, 2020, https://doi.org/10.1080/01490451.2020.1805651
- Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents vol.9, pp.None, 2012, https://doi.org/10.7831/ras.9.0_103
- Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents vol.9, pp.None, 2012, https://doi.org/10.7831/ras.9.0_103
- Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review vol.226, pp.None, 2012, https://doi.org/10.1016/j.ecoenv.2021.112863