References
- Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Britton, H. T. S. and R. A. Robinson. 1931. Universal buffer solutions and dissociation constant of veronal. J. Chem. Soc. 1456-1462.
- Finnegan, P. M., S. M. Brumbley, M. G. O. Shea, K. M. H. Nevalainen, and P. L. Bergquist. 2004. Isolation and characterization of genes encoding thermoactive and thermostable dextranases from two thermotolerant soil bacteria. Curr. Microbiol. 49: 327-333. https://doi.org/10.1007/s00284-004-4308-5
- Finnegan, P. M., S. M. Brumbley, M. G. O. Shea, K. M. H. Nevalainen, and P. L. Bergquist. 2005. Diverse dextranase genes from Paenibacillus species. Arch. Microbiol. 183: 140-147. https://doi.org/10.1007/s00203-004-0756-3
- Hattori, A., K. Ishibashi, and S. Minato. 1981. The purification and characterization of the dextranase of Chaetomium gracile. Agric. Biol. Chem. 45: 2409-2416. https://doi.org/10.1271/bbb1961.45.2409
- Hild, E., S. M. Brubmley, M. G. O. Shea, H. Nevalainen, and Q. L. Bergquist. 2007. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Appl. Microbiol. Biotechnol. 75: 1071-1078. https://doi.org/10.1007/s00253-007-0936-6
- Hoster, F., R. Daniel, and G. Gottschalk. 2001. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J. Gen. Appl. Microbiol. 47: 187-192. https://doi.org/10.2323/jgam.47.187
- Inkerman, P. A. 1990. An appraisal of the use of dextranase, 2411-2327. Proc. XVII Congress Int. Soc. Sugar Cane Technologists, Manila, Philippines.
- Khalikova E., P. Susi, and T. Korpela. 2005. Microbial dextran-hydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. Rev. 69: 306-325. https://doi.org/10.1128/MMBR.69.2.306-325.2005
- Kim, Y. M. and D. Kim. 2010. Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl. Microbiol. Biotechnol. 85: 581-587. https://doi.org/10.1007/s00253-009-2121-6
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextan and acceptor-products by Leuconosotc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
- Wynter, C. V. A., C. F. Galea, L. M. Cox, M. W. Dawson, B. K. C. Patel, P. A. Inkerman, and S. Hamilton. 1995. Thermostable dextranases: Screening, detection and preliminary characterization. J. Appl. Bacteriol. 79: 203-212. https://doi.org/10.1111/j.1365-2672.1995.tb00936.x
- Wynter, C. V. A., B. K. C. Patel, P. Bain, J. De. Jersey, S. Hamilton, and P. A. Inkerman. 1996. A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 140: 271-276. https://doi.org/10.1111/j.1574-6968.1996.tb08348.x
- Wynter, C. V. A., M. Chan, J. De. Jersey, B. K. C. Patel, P. A. Inkerman, and S. Hamilton 1997. Isolation and characterization of a thermostable dextranase. Enzyme. Microb. Technol. 20: 242-247. https://doi.org/10.1016/S0141-0229(96)00118-4
- Yamamoto, T., T. Terasawa, Y. M. Kim, A. Kimura, Y, Kitamura, M. Kobayashi, and K. Funane. 2006. Identification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040. Biosci. Biotechnol. Biochem. 70: 1947-1953. https://doi.org/10.1271/bbb.60105
- Zhaxybayeva, O., K. S. Swithers, P. Lapierre, G. P. Fournier, D. M. Bickhart, R. T. DeBoy, et al. 2009. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl. Acad. Sci. USA 106: 5865-5870. https://doi.org/10.1073/pnas.0901260106
Cited by
- Enzymatic Synthesis of Puerarin Glucosides Using Leuconostoc Dextransucrase vol.22, pp.9, 2012, https://doi.org/10.4014/jmb.1202.02007
- Screening, production, and characterization of dextranase from Catenovulum sp. vol.64, pp.1, 2012, https://doi.org/10.1007/s13213-013-0644-7
- Chitosan hydrogel microspheres: an effective covalent matrix for crosslinking of soluble dextranase to increase stability and recycling efficiency vol.40, pp.3, 2012, https://doi.org/10.1007/s00449-016-1713-7
- Purification and Characterization of a Biofilm-Degradable Dextranase from a Marine Bacterium vol.16, pp.2, 2012, https://doi.org/10.3390/md16020051
- Purification and Characterization Including Dextran Hydrolysis of Dextranase from Aspergillus allahabadii X26 vol.21, pp.2, 2019, https://doi.org/10.1007/s12355-018-0652-9
- A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides vol.103, pp.16, 2012, https://doi.org/10.1007/s00253-019-09965-y
- Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide vol.17, pp.8, 2012, https://doi.org/10.3390/md17080479
- Degradation of Long Chain Polymer (Dextran) Using Thermostable Dextranase from Hydrothermal Spring Isolate (Bacillus megaterium) vol.36, pp.8, 2012, https://doi.org/10.1080/01490451.2019.1605427