DOI QR코드

DOI QR Code

Investigation on the Effects of Three X${\rightarrow}$Histidine Replacements on Thermostability of ${\alpha}$-Amylase from Bacillus amyloliquefaciens

  • Haghani, Karimeh (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Naderi-Manesh, Hossein (Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Ranjbar, Bijan (Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University)
  • 투고 : 2011.09.07
  • 심사 : 2011.12.23
  • 발행 : 2012.05.28

초록

Bacillus licheniformis ${\alpha}$-amylase (BLA), a thermophilic counterpart of Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), is an appropriate model for the design of stabilizing mutations in BAA. BLA has 10 more histidines than BAA. Considering this prominent difference, in the present study, three out of these positions (I34, Q67, and P407; located in the thermostability determinant 1 region and Ca-III binding site of BAA) were replaced with histidine in BAA, using the site-directed mutagenesis technique. The results showed that the thermostability of P407H and Q67H mutants had increased, but no significant changes were observed in their kinetic parameters compared to that of the wild type. I34H replacement resulted in complete loss of enzyme activity. Moreover, fluorescence and circular dichroism data indicated a more rigid structure for the P407H variant compared with that of the wild-type BAA. However, the flexibility of Q67H and I34H mutants increased in comparison with that of wild-type enzyme.

키워드

참고문헌

  1. Alikhajeh, J., K. Khajeh, B. Ranjbar, H. Naderi-Manesh, Y. H. Lin, E. Liu, et al. 2010. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: Implications for thermal stability. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 66: 121-129. https://doi.org/10.1107/S1744309109051938
  2. Arnold, F. H. 2001. Evolutionary Protein Design, pp. 209-212. Academic Press, California.
  3. Azad, M. A., J. H. Bae, J. S. Kim, J. K. Lim, K. S. Song, B. S. Shin, and H. R. Kim. 2009. Isolation and characterization of a novel thermostable alpha-amylase from Korean pine seeds. N. Biotechnol. 26: 143-149. https://doi.org/10.1016/j.nbt.2009.09.006
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, et al. 2000. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107. https://doi.org/10.1021/bi0000317
  6. Caflisch, A. and M. Karplus. 1995. Computational combinatorial chemistry for de novo ligand design: Review and assessment. Perspect. Drug Disc. Design 3: 51-84. https://doi.org/10.1007/BF02174467
  7. Chakravarty, S. and R. Varadarajan. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65-69. https://doi.org/10.1016/S0014-5793(00)01267-9
  8. Chi, M. C., Y. H. Chen, T. J. Wu, H. F. Lo, and L. L. Lin. 2010. Engineering of a truncated alpha-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J. Biosci. Bioeng. 109: 531-538. https://doi.org/10.1016/j.jbiosc.2009.11.012
  9. Colombo, G. and K. M. Merz. 1999. Stability and activity of mesophilic subtilisin E and its thermophilic homolog: Insights from molecular dynamics simulations J. Am. Chem. Soc. 121: 6895-6903. https://doi.org/10.1021/ja990420s
  10. Conrad, B., V. Hoang, A. Polley, and J. Hofemeister. 1995. Hybrid Bacillus amyloliquefaciens $\times$ Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants. Eur. J. Biochem. 230: 481-490.
  11. Declerck, N., M. Machius, R. Chambert, G. Wiegand, R. Huber, and C. Gaillardin. 1997. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: Thermodynamic studies and structural interpretation. Protein Eng. 10: 541-549. https://doi.org/10.1093/protein/10.5.541
  12. Declerck, N., M. Machius, P. Joyet, G. Wiegand, R. Huber, and C. Gaillardin. 2003. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng. 16: 287-293. https://doi.org/10.1093/proeng/gzg032
  13. Declerck, N., M. Machius, G. Wiegand, R. Huber, and C. Gaillardin. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057. https://doi.org/10.1006/jmbi.2000.4025
  14. Dong, X. Y., M. L. Fu, and SunYan. 2008. Refolding of recombinant homodimeric malate dehydrogenase expressed in Escherichia coli as inclusion bodies. Biochem. Eng. J. 38: 341-348. https://doi.org/10.1016/j.bej.2007.07.022
  15. Eftink, M. R. and C. A. Ghiron. 1977. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16: 5546-5551. https://doi.org/10.1021/bi00644a024
  16. Fisher, C. L. and G. K. Pei. 1997. Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23: 570-574.
  17. Fitter, J. 2005. Structural and dynamical features contributing to thermostability in alpha-amylases. Cell. Mol. Life Sci. 62: 1925-1937. https://doi.org/10.1007/s00018-005-5079-2
  18. Fitter, J., R. Herrmann, N. A. Dencher, A. Blume, and T. Hauss. 2001. Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry 40: 10723-10731. https://doi.org/10.1021/bi010808b
  19. Ghollasi, M., K. Khajeh, H. Naderi-Manesh, and A. Ghasemi. 2010. Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Appl. Biochem. Biotechnol. 162: 444-459. https://doi.org/10.1007/s12010-009-8879-2
  20. Gryczan, T. J. and D. Dubnau. 1978. Construction and properties of chimeric plasmids in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 1428-1432. https://doi.org/10.1073/pnas.75.3.1428
  21. Haghani, K., K. Khajeh, A. H. Salmanian, B. Ranjbar, and S. Bakhtiyari. 2010. Acid-induced formation of molten globule states in the wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase and its three mutated forms: G96A, A183T and G96A/A183T. Protein J. 30: 132-137.
  22. Haghani, K., A. H. Salmanian, B. Ranjbar, K. Zakikhan-Alang, and K. Khajeh. 2008. Comparative studies of wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase with three glyphosate-insensitive mutated forms: Activity, stability and structural characterization. Biochim. Biophys. Acta 1784: 1167-1175. https://doi.org/10.1016/j.bbapap.2007.07.021
  23. Heyda, J., P. E. Mason, and P. Jungwirth. 2010. Attractive interactions between side chains of histidine-histidine and histidine-arginine-based cationic dipeptides in water. J. Phys. Chem. 114: 8744-8749.
  24. Janecek, S. 1997. Alpha-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol. 67: 67-97. https://doi.org/10.1016/S0079-6107(97)00015-1
  25. Kuriki, T. and T. Imanaka. 1999. The concept of the alpha-amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557-565. https://doi.org/10.1016/S1389-1723(99)80114-5
  26. Laderman, K. A., B. R. Davis, H. C. Krutzsch, M. S. Lewis, Y. V. Griko, P. L. Privalov, and C. B. Anfinsen. 1993. The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268: 24394-24401.
  27. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  28. Lazaridis, T., I. Lee, and M. Karplus. 1997. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 6: 2589-2605.
  29. Lee, S., Y. Mouri, M. Minoda, H. Oneda, and K. Inouye. 2006. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus alpha-amylase. J. Biochem. 139: 1007-1015. https://doi.org/10.1093/jb/mvj107
  30. Lemaster, D. M., J. Tang, D. I. Paredes, and G. Hernandez. 2005. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: Spatial propagation of differential flexibility in rubredoxin hybrids. Proteins 61: 608-616. https://doi.org/10.1002/prot.20594
  31. Lim, J. K., H. S. Lee, Y. J. Kim, S. S. Bae, J. H. Jeon, S. G. Kang, and J. H. Lee. 2007. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242-1248.
  32. Miller, G. L. Jr. 1959. Cardiac arrest. Miss. Doct. 37: 149-151.
  33. Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial alpha-amylases. Biochim. Biophys. Acta 1543: 253-274. https://doi.org/10.1016/S0167-4838(00)00240-5
  34. Nosoh, Y. and T. Sekiguchi. 1993. Protein stability and stabilization through protein engineering. Biochem. Mol. Biol. Edu. 21: 111-117.
  35. Pack, S. P. and Y. J. Yoo. 2004. Protein thermostability: Structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111: 269-277. https://doi.org/10.1016/j.jbiotec.2004.01.018
  36. Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152. https://doi.org/10.1042/BA19990073
  37. Savchenko, A., C. Vieille, S. Kang, and J. G. Zeikus. 2002. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc. Biochemistry 41: 6193-6201. https://doi.org/10.1021/bi012106s
  38. Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933-18938.
  39. Swanson, K. C., N. Kelly, H. Salim, Y. J. Wang, S. Holligan, M. Z. Fan, and B. W. McBride. 2008. Pancreatic mass, cellularity, and alpha-amylase and trypsin activity in feedlot steers fed diets differing in crude protein concentration. J. Anim. Sci. 86: 909-915. https://doi.org/10.2527/jas.2007-0514
  40. Takase, K., T. Matsumoto, H. Mizuno, and K. Yamane. 1992. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase. Biochim. Biophys. Acta 1120: 281-288. https://doi.org/10.1016/0167-4838(92)90249-D
  41. Tanaka, A. and E. Hoshino. 2003. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. J. Biosci. Bioeng. 96: 262-267.
  42. Tomazic, S. J. and A. M. Klibanov. 1988. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263: 3092-3096.
  43. van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
  44. Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.

피인용 문헌

  1. Remarkable Improvement of Methylglyoxal Synthase Thermostability by His-His Interaction vol.172, pp.1, 2014, https://doi.org/10.1007/s12010-013-0404-y
  2. Improved activity of α-L-arabinofuranosidase fromGeobacillus vulcaniGS90 by directed evolution: Investigation on thermal and alkaline stability : Improved activity ofGvAbf by directed evolution vol.66, pp.1, 2012, https://doi.org/10.1002/bab.1702
  3. Enhancing thermostabilization of a newly discovered α-amylase from Bacillus cereus GL96 by combining computer-aided directed evolution and site-directed mutagenesis vol.197, pp.None, 2012, https://doi.org/10.1016/j.ijbiomac.2021.12.057