References
- Alikhajeh, J., K. Khajeh, B. Ranjbar, H. Naderi-Manesh, Y. H. Lin, E. Liu, et al. 2010. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: Implications for thermal stability. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 66: 121-129. https://doi.org/10.1107/S1744309109051938
- Arnold, F. H. 2001. Evolutionary Protein Design, pp. 209-212. Academic Press, California.
- Azad, M. A., J. H. Bae, J. S. Kim, J. K. Lim, K. S. Song, B. S. Shin, and H. R. Kim. 2009. Isolation and characterization of a novel thermostable alpha-amylase from Korean pine seeds. N. Biotechnol. 26: 143-149. https://doi.org/10.1016/j.nbt.2009.09.006
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, et al. 2000. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107. https://doi.org/10.1021/bi0000317
- Caflisch, A. and M. Karplus. 1995. Computational combinatorial chemistry for de novo ligand design: Review and assessment. Perspect. Drug Disc. Design 3: 51-84. https://doi.org/10.1007/BF02174467
- Chakravarty, S. and R. Varadarajan. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65-69. https://doi.org/10.1016/S0014-5793(00)01267-9
- Chi, M. C., Y. H. Chen, T. J. Wu, H. F. Lo, and L. L. Lin. 2010. Engineering of a truncated alpha-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J. Biosci. Bioeng. 109: 531-538. https://doi.org/10.1016/j.jbiosc.2009.11.012
- Colombo, G. and K. M. Merz. 1999. Stability and activity of mesophilic subtilisin E and its thermophilic homolog: Insights from molecular dynamics simulations J. Am. Chem. Soc. 121: 6895-6903. https://doi.org/10.1021/ja990420s
-
Conrad, B., V. Hoang, A. Polley, and J. Hofemeister. 1995. Hybrid Bacillus amyloliquefaciens
$\times$ Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants. Eur. J. Biochem. 230: 481-490. - Declerck, N., M. Machius, R. Chambert, G. Wiegand, R. Huber, and C. Gaillardin. 1997. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: Thermodynamic studies and structural interpretation. Protein Eng. 10: 541-549. https://doi.org/10.1093/protein/10.5.541
- Declerck, N., M. Machius, P. Joyet, G. Wiegand, R. Huber, and C. Gaillardin. 2003. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng. 16: 287-293. https://doi.org/10.1093/proeng/gzg032
- Declerck, N., M. Machius, G. Wiegand, R. Huber, and C. Gaillardin. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057. https://doi.org/10.1006/jmbi.2000.4025
- Dong, X. Y., M. L. Fu, and SunYan. 2008. Refolding of recombinant homodimeric malate dehydrogenase expressed in Escherichia coli as inclusion bodies. Biochem. Eng. J. 38: 341-348. https://doi.org/10.1016/j.bej.2007.07.022
- Eftink, M. R. and C. A. Ghiron. 1977. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16: 5546-5551. https://doi.org/10.1021/bi00644a024
- Fisher, C. L. and G. K. Pei. 1997. Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23: 570-574.
- Fitter, J. 2005. Structural and dynamical features contributing to thermostability in alpha-amylases. Cell. Mol. Life Sci. 62: 1925-1937. https://doi.org/10.1007/s00018-005-5079-2
- Fitter, J., R. Herrmann, N. A. Dencher, A. Blume, and T. Hauss. 2001. Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry 40: 10723-10731. https://doi.org/10.1021/bi010808b
- Ghollasi, M., K. Khajeh, H. Naderi-Manesh, and A. Ghasemi. 2010. Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Appl. Biochem. Biotechnol. 162: 444-459. https://doi.org/10.1007/s12010-009-8879-2
- Gryczan, T. J. and D. Dubnau. 1978. Construction and properties of chimeric plasmids in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 1428-1432. https://doi.org/10.1073/pnas.75.3.1428
- Haghani, K., K. Khajeh, A. H. Salmanian, B. Ranjbar, and S. Bakhtiyari. 2010. Acid-induced formation of molten globule states in the wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase and its three mutated forms: G96A, A183T and G96A/A183T. Protein J. 30: 132-137.
- Haghani, K., A. H. Salmanian, B. Ranjbar, K. Zakikhan-Alang, and K. Khajeh. 2008. Comparative studies of wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase with three glyphosate-insensitive mutated forms: Activity, stability and structural characterization. Biochim. Biophys. Acta 1784: 1167-1175. https://doi.org/10.1016/j.bbapap.2007.07.021
- Heyda, J., P. E. Mason, and P. Jungwirth. 2010. Attractive interactions between side chains of histidine-histidine and histidine-arginine-based cationic dipeptides in water. J. Phys. Chem. 114: 8744-8749.
- Janecek, S. 1997. Alpha-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol. 67: 67-97. https://doi.org/10.1016/S0079-6107(97)00015-1
- Kuriki, T. and T. Imanaka. 1999. The concept of the alpha-amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557-565. https://doi.org/10.1016/S1389-1723(99)80114-5
- Laderman, K. A., B. R. Davis, H. C. Krutzsch, M. S. Lewis, Y. V. Griko, P. L. Privalov, and C. B. Anfinsen. 1993. The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268: 24394-24401.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lazaridis, T., I. Lee, and M. Karplus. 1997. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 6: 2589-2605.
- Lee, S., Y. Mouri, M. Minoda, H. Oneda, and K. Inouye. 2006. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus alpha-amylase. J. Biochem. 139: 1007-1015. https://doi.org/10.1093/jb/mvj107
- Lemaster, D. M., J. Tang, D. I. Paredes, and G. Hernandez. 2005. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: Spatial propagation of differential flexibility in rubredoxin hybrids. Proteins 61: 608-616. https://doi.org/10.1002/prot.20594
- Lim, J. K., H. S. Lee, Y. J. Kim, S. S. Bae, J. H. Jeon, S. G. Kang, and J. H. Lee. 2007. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242-1248.
- Miller, G. L. Jr. 1959. Cardiac arrest. Miss. Doct. 37: 149-151.
- Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial alpha-amylases. Biochim. Biophys. Acta 1543: 253-274. https://doi.org/10.1016/S0167-4838(00)00240-5
- Nosoh, Y. and T. Sekiguchi. 1993. Protein stability and stabilization through protein engineering. Biochem. Mol. Biol. Edu. 21: 111-117.
- Pack, S. P. and Y. J. Yoo. 2004. Protein thermostability: Structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111: 269-277. https://doi.org/10.1016/j.jbiotec.2004.01.018
- Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152. https://doi.org/10.1042/BA19990073
- Savchenko, A., C. Vieille, S. Kang, and J. G. Zeikus. 2002. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc. Biochemistry 41: 6193-6201. https://doi.org/10.1021/bi012106s
- Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933-18938.
- Swanson, K. C., N. Kelly, H. Salim, Y. J. Wang, S. Holligan, M. Z. Fan, and B. W. McBride. 2008. Pancreatic mass, cellularity, and alpha-amylase and trypsin activity in feedlot steers fed diets differing in crude protein concentration. J. Anim. Sci. 86: 909-915. https://doi.org/10.2527/jas.2007-0514
- Takase, K., T. Matsumoto, H. Mizuno, and K. Yamane. 1992. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase. Biochim. Biophys. Acta 1120: 281-288. https://doi.org/10.1016/0167-4838(92)90249-D
- Tanaka, A. and E. Hoshino. 2003. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. J. Biosci. Bioeng. 96: 262-267.
- Tomazic, S. J. and A. M. Klibanov. 1988. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263: 3092-3096.
- van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
- Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.
Cited by
- Remarkable Improvement of Methylglyoxal Synthase Thermostability by His-His Interaction vol.172, pp.1, 2014, https://doi.org/10.1007/s12010-013-0404-y
- Improved activity of α-L-arabinofuranosidase fromGeobacillus vulcaniGS90 by directed evolution: Investigation on thermal and alkaline stability : Improved activity ofGvAbf by directed evolution vol.66, pp.1, 2012, https://doi.org/10.1002/bab.1702
- Enhancing thermostabilization of a newly discovered α-amylase from Bacillus cereus GL96 by combining computer-aided directed evolution and site-directed mutagenesis vol.197, pp.None, 2012, https://doi.org/10.1016/j.ijbiomac.2021.12.057