DOI QR코드

DOI QR Code

Metagenomic Analysis of Novel Lignocellulose-Degrading Enzymes from Higher Termite Guts Inhabiting Microbes

  • Nimchua, Thidarat (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)) ;
  • Thongaram, Taksawan (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)) ;
  • Uengwetwanit, Tanaporn (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)) ;
  • Pongpattanakitshote, Somchai (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)) ;
  • Eurwilaichitr, Lily (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC))
  • Received : 2011.08.17
  • Accepted : 2011.12.05
  • Published : 2012.04.28

Abstract

A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from $50^{\circ}C$ to $55^{\circ}C$. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.

Keywords

References

  1. Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol. Bioeng. 96: 48-56. https://doi.org/10.1002/bit.21175
  2. Bayer, E. A., E. Morag, R. Lamed, S. Yaron, and Y. Shoham. 1998. Cellulosome structure: Four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics, carbohydrases from Trichoderma reesei and other microorganisms, pp. 39-65. In M. Claeyssens, W. Nerinckx, and K. Piens (eds.). The Royal Society of Chemistry, London, UK.
  3. Betsy, L. and J. H. D. Wu. 1998. Involvement of both dockerin subdomains in assembly of the Clostridium thermocellum cellulosome. J. Bacteriol. 180: 6581-6585.
  4. Bignell, D. E. and P. Eggleton. 1995. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insec. Soc. 42: 57-69. https://doi.org/10.1007/BF01245699
  5. Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, et al. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617. https://doi.org/10.1128/AEM.70.6.3609-3617.2004
  6. Breznak, J. A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487. https://doi.org/10.1146/annurev.en.39.010194.002321
  7. Bunterngsook, B., P. Kanokratana, T. Thongaram, S. Tanapongpipat, T. Uengwetwanit, S. Rachdawong, et al. 2010. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome. Biosci. Biotech. Biochem. 74: 1848-1854. https://doi.org/10.1271/bbb.100249
  8. Cowan, D., Q. Meyer, W. Stafford, S. Muyanga, R. Cameron, and P. Wittwer. 2005. Metagenomic gene discovery: Past, present and future. Trends Biotechnol. 23: 321-329. https://doi.org/10.1016/j.tibtech.2005.04.001
  9. Dadd, R. H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol. 21: 1847-1853. https://doi.org/10.1016/0022-1910(75)90252-8
  10. Dow, J. A. T. 1992. pH Gradients in Lepidopteran midgut. J. Exp. Biol. 172: 355-375.
  11. Ducros, V., M. Czjzek, A. Belaich, C. Gaudin, H. P. Fierobe, J. P. Belaich, et al. 1995. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3: 939-949. https://doi.org/10.1016/S0969-2126(01)00228-3
  12. Esteghlalian, A. R., M. M. Kazaoka, B. A. Lowery, A. Varvak, B. Hancock, T. Woodward, et al. 2008. Prebleaching of softwood and hardwood pulps by a high performance xylanase belonging to a novel clade of glycosyl hydrolase family 11. Enzyme Microb. Technol. 42: 395-403. https://doi.org/10.1016/j.enzmictec.2007.12.004
  13. Ferrer, M., O. V. Golyshina, T. N. Chernikova, A. N. Khachane, D. Reyes-Duarte, V. A. P. M. D. Santos, et al. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7: 1996-2010. https://doi.org/10.1111/j.1462-2920.2005.00920.x
  14. Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194. https://doi.org/10.1099/00221287-139-2-187
  15. Graber, J. R., J. R. Leadbetter, and J. A. Breznak. 2004. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl. Environ. Microbiol. 70: 1315-1320. https://doi.org/10.1128/AEM.70.3.1315-1320.2004
  16. Hall, J., G. W. Black, L. M. Ferreira, S. J. Millward-Sadler, B. R. Ali, G. P. Hazlewood, and H. J. Gilbert. 1995. The noncatalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J. 309: 749-756. https://doi.org/10.1042/bj3090749
  17. Healy, F. G., R. M. Ray, H. C. Aldrich, A. C. Wilkie, L. O. Ingram, and K. T. Shanmugam. 1995. Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43: 667-674. https://doi.org/10.1007/BF00164771
  18. Hongoh, Y., T. Sato, M. F. Dolan, S. Noda, S. Ui, T. Kudo, and M. Ohkuma. 2007. The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the "synergistes" group. Appl. Environ. Microbiol. 73: 6270-6276. https://doi.org/10.1128/AEM.00750-07
  19. Jiang, Z. Q., W. Deng, L. T. Li, C. H. Ding, I. Kusakabe, and S. S. Tan. 2004. A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnol. Lett. 26: 431-436. https://doi.org/10.1023/B:BILE.0000018266.75248.03
  20. Kataeva, I. A., D. L. Blum, L. Xin-Liang, and L. G. Ljungdahl. 2001. Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? Prot. Eng. 14: 167-172. https://doi.org/10.1093/protein/14.3.167
  21. Kim, D. Y., M. K. Han, H. W. Oh, D. S. Park, S. J. Kim, S. G. Lee, et al. 2010. Catalytic properties of a GH10 endo-${\beta}$-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J. Mol. Catal. B Enz. 62: 32-39. https://doi.org/10.1016/j.molcatb.2009.08.015
  22. Kim, S. J., C. M. Lee, B. R. Han, M. Y. Kim, Y. S. Yeo, S. H. Yoon, et al. 2008. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol. Lett. 282: 44-51. https://doi.org/10.1111/j.1574-6968.2008.01097.x
  23. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  24. Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996. Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol. Gen. Genet. 252: 493-496.
  25. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Mitsumori, M. and H. Minato. 2000. Identification of the cellulose-binding domain of Fibrobacter succinogenes endoglucanase F. FEMS Microbiol. Lett. 183: 99-103. https://doi.org/10.1111/j.1574-6968.2000.tb08940.x
  27. Notenboom, V., A. B. Boraston, P. Chiu, A. C. J. Freelove, D. G. Kilburn, and D. R. Rose. 2001. Recognition of cellooligosaccharides by a family 17 carbohydrate-binding module: An x-ray crystallographic, thermodynamic and mutagenic study. J. Mol. Biol. 314: 797-806. https://doi.org/10.1006/jmbi.2001.5153
  28. Prillinger, H., R. Messner, H. Konig, R. Bauer, K. Lopandic, O. Molnar, et al. 1996. Yeasts associated with termites: A phenotypic and genotypic characterization and use of co-evolution for dating evolutionary radiations in asco- and basidiomycetes. Syst. Appl. Microbiol. 19: 265-293. https://doi.org/10.1016/S0723-2020(96)80053-1
  29. Qinnghe, C., Y. Xiaoyu, N. Tiangui, J. Cheng, and M. Qiugang. 2004. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem. 39: 1561-1566. https://doi.org/10.1016/S0032-9592(03)00290-5
  30. Saxena, S., J. Bahadur, and A. Varma. 1991. Production and localisation of carboxymethylcellulase, xylanase and ${\beta}$-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34: 668-670. https://doi.org/10.1007/BF00167920
  31. Shao, W. and J. Wiegel. 1992. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J. Bacteriol. 174: 5848-5853. https://doi.org/10.1128/jb.174.18.5848-5853.1992
  32. Shin, E. S., M. J. Yang, K. H. Jung, E. J. Kwon, J. S. Jung, S. K. Park, et al. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68: 3496-3501. https://doi.org/10.1128/AEM.68.7.3496-3501.2002
  33. Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria, pp. 10-72. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic and Professional, New York, U.S.A.
  34. Tartar, A., M. M. Wheeler, X. Zhou, M. R. Coy, D. G. Boucias, and M. E. Scharf. 2009. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels 2: 25. https://doi.org/10.1186/1754-6834-2-25
  35. Todaka, N., S. Moriya, K. Saita, T. Hondo, I. Kiuchi, H. Takasu, et al. 2007. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol. Ecol. 59: 592-599. https://doi.org/10.1111/j.1574-6941.2006.00237.x
  36. Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. https://doi.org/10.1038/nature06269
  37. Yang, V. W., Z. Zhuang, G. Elegir, and T. W. Jeffries. 1995. Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. J. Ind. Microbiol. 15: 434-441. https://doi.org/10.1007/BF01569971
  38. Yoshio, W., S. Naoya, and F. Takema. 2003. Isolation of actinomycetes from termites' guts. Biosci. Biotechnol. Biochem. 67: 1797-1801. https://doi.org/10.1271/bbb.67.1797
  39. Zhang, H. and A. Brune. 2004. Characterization and partial purification of proteinases from the highly alkaline midgut of the humivorous larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol. Biochem. 36: 435-442. https://doi.org/10.1016/j.soilbio.2003.10.021

Cited by

  1. Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig‐like domain vol.110, pp.12, 2013, https://doi.org/10.1002/bit.24982
  2. Characterization of a new oxidant-stable serine protease isolated by functional metagenomics vol.2, pp.1, 2012, https://doi.org/10.1186/2193-1801-2-410
  3. Bacillus subtilis as a Tool for Screening Soil Metagenomic Libraries for Antimicrobial Activities vol.23, pp.6, 2012, https://doi.org/10.4014/jmb.1212.12008
  4. Nature’s bioreactor: the rumen as a model for biofuel production vol.4, pp.5, 2013, https://doi.org/10.4155/bfs.13.36
  5. Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0061126
  6. The cellulolytic system of the termite gut vol.97, pp.18, 2013, https://doi.org/10.1007/s00253-013-5119-z
  7. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia vol.97, pp.20, 2012, https://doi.org/10.1007/s00253-013-4699-y
  8. Cloning and Characterization of a Novel ${\alpha}$-Amylase from a Fecal Microbial Metagenome vol.24, pp.4, 2012, https://doi.org/10.4014/jmb.1310.10121
  9. Alternative hosts for functional (meta)genome analysis vol.98, pp.19, 2012, https://doi.org/10.1007/s00253-014-5961-7
  10. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes vol.98, pp.23, 2012, https://doi.org/10.1007/s00253-014-6142-4
  11. Metagenomics: Retrospect and Prospects in High Throughput Age vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/121735
  12. Omic research in termites: an overview and a roadmap vol.6, pp.None, 2012, https://doi.org/10.3389/fgene.2015.00076
  13. Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake vol.25, pp.5, 2015, https://doi.org/10.4014/jmb.1408.08062
  14. Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli vol.18, pp.2, 2012, https://doi.org/10.1016/j.ejbt.2014.12.007
  15. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development vol.36, pp.6, 2012, https://doi.org/10.3109/07388551.2015.1083939
  16. Molecular and Biochemical Characterization of a Novel Xylanase from Massilia sp. RBM26 Isolated from the Feces of Rhinopithecus bieti vol.26, pp.1, 2012, https://doi.org/10.4014/jmb.1504.04021
  17. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects vol.10, pp.6, 2012, https://doi.org/10.1002/bbb.1709
  18. Recent Advances in Function-based Metagenomic Screening vol.16, pp.6, 2018, https://doi.org/10.1016/j.gpb.2018.01.002
  19. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites vol.115, pp.51, 2012, https://doi.org/10.1073/pnas.1810550115
  20. A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria) vol.49, pp.1, 2012, https://doi.org/10.1093/ee/nvz130
  21. Purification and Biochemical Characterization of Alkalophilic Cellulase from the Symbiotic Bacillus subtilis BC1 of the Leopard Moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae) vol.77, pp.7, 2020, https://doi.org/10.1007/s00284-020-01938-z
  22. Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri vol.165, pp.1, 2012, https://doi.org/10.1016/j.ijbiomac.2020.09.236
  23. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-60850-5
  24. Screening, cloning, enzymatic properties of a novel thermostable cellulase enzyme, and its potential application on water hyacinth utilization vol.24, pp.3, 2021, https://doi.org/10.1007/s10123-021-00170-4