References
- Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol. Bioeng. 96: 48-56. https://doi.org/10.1002/bit.21175
- Bayer, E. A., E. Morag, R. Lamed, S. Yaron, and Y. Shoham. 1998. Cellulosome structure: Four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics, carbohydrases from Trichoderma reesei and other microorganisms, pp. 39-65. In M. Claeyssens, W. Nerinckx, and K. Piens (eds.). The Royal Society of Chemistry, London, UK.
- Betsy, L. and J. H. D. Wu. 1998. Involvement of both dockerin subdomains in assembly of the Clostridium thermocellum cellulosome. J. Bacteriol. 180: 6581-6585.
- Bignell, D. E. and P. Eggleton. 1995. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insec. Soc. 42: 57-69. https://doi.org/10.1007/BF01245699
- Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, et al. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617. https://doi.org/10.1128/AEM.70.6.3609-3617.2004
- Breznak, J. A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487. https://doi.org/10.1146/annurev.en.39.010194.002321
- Bunterngsook, B., P. Kanokratana, T. Thongaram, S. Tanapongpipat, T. Uengwetwanit, S. Rachdawong, et al. 2010. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome. Biosci. Biotech. Biochem. 74: 1848-1854. https://doi.org/10.1271/bbb.100249
- Cowan, D., Q. Meyer, W. Stafford, S. Muyanga, R. Cameron, and P. Wittwer. 2005. Metagenomic gene discovery: Past, present and future. Trends Biotechnol. 23: 321-329. https://doi.org/10.1016/j.tibtech.2005.04.001
- Dadd, R. H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol. 21: 1847-1853. https://doi.org/10.1016/0022-1910(75)90252-8
- Dow, J. A. T. 1992. pH Gradients in Lepidopteran midgut. J. Exp. Biol. 172: 355-375.
- Ducros, V., M. Czjzek, A. Belaich, C. Gaudin, H. P. Fierobe, J. P. Belaich, et al. 1995. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3: 939-949. https://doi.org/10.1016/S0969-2126(01)00228-3
- Esteghlalian, A. R., M. M. Kazaoka, B. A. Lowery, A. Varvak, B. Hancock, T. Woodward, et al. 2008. Prebleaching of softwood and hardwood pulps by a high performance xylanase belonging to a novel clade of glycosyl hydrolase family 11. Enzyme Microb. Technol. 42: 395-403. https://doi.org/10.1016/j.enzmictec.2007.12.004
- Ferrer, M., O. V. Golyshina, T. N. Chernikova, A. N. Khachane, D. Reyes-Duarte, V. A. P. M. D. Santos, et al. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7: 1996-2010. https://doi.org/10.1111/j.1462-2920.2005.00920.x
- Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194. https://doi.org/10.1099/00221287-139-2-187
- Graber, J. R., J. R. Leadbetter, and J. A. Breznak. 2004. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl. Environ. Microbiol. 70: 1315-1320. https://doi.org/10.1128/AEM.70.3.1315-1320.2004
- Hall, J., G. W. Black, L. M. Ferreira, S. J. Millward-Sadler, B. R. Ali, G. P. Hazlewood, and H. J. Gilbert. 1995. The noncatalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J. 309: 749-756. https://doi.org/10.1042/bj3090749
- Healy, F. G., R. M. Ray, H. C. Aldrich, A. C. Wilkie, L. O. Ingram, and K. T. Shanmugam. 1995. Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43: 667-674. https://doi.org/10.1007/BF00164771
- Hongoh, Y., T. Sato, M. F. Dolan, S. Noda, S. Ui, T. Kudo, and M. Ohkuma. 2007. The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the "synergistes" group. Appl. Environ. Microbiol. 73: 6270-6276. https://doi.org/10.1128/AEM.00750-07
- Jiang, Z. Q., W. Deng, L. T. Li, C. H. Ding, I. Kusakabe, and S. S. Tan. 2004. A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnol. Lett. 26: 431-436. https://doi.org/10.1023/B:BILE.0000018266.75248.03
- Kataeva, I. A., D. L. Blum, L. Xin-Liang, and L. G. Ljungdahl. 2001. Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? Prot. Eng. 14: 167-172. https://doi.org/10.1093/protein/14.3.167
-
Kim, D. Y., M. K. Han, H. W. Oh, D. S. Park, S. J. Kim, S. G. Lee, et al. 2010. Catalytic properties of a GH10 endo-
${\beta}$ -1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J. Mol. Catal. B Enz. 62: 32-39. https://doi.org/10.1016/j.molcatb.2009.08.015 - Kim, S. J., C. M. Lee, B. R. Han, M. Y. Kim, Y. S. Yeo, S. H. Yoon, et al. 2008. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol. Lett. 282: 44-51. https://doi.org/10.1111/j.1574-6968.2008.01097.x
- Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
- Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996. Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol. Gen. Genet. 252: 493-496.
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Mitsumori, M. and H. Minato. 2000. Identification of the cellulose-binding domain of Fibrobacter succinogenes endoglucanase F. FEMS Microbiol. Lett. 183: 99-103. https://doi.org/10.1111/j.1574-6968.2000.tb08940.x
- Notenboom, V., A. B. Boraston, P. Chiu, A. C. J. Freelove, D. G. Kilburn, and D. R. Rose. 2001. Recognition of cellooligosaccharides by a family 17 carbohydrate-binding module: An x-ray crystallographic, thermodynamic and mutagenic study. J. Mol. Biol. 314: 797-806. https://doi.org/10.1006/jmbi.2001.5153
- Prillinger, H., R. Messner, H. Konig, R. Bauer, K. Lopandic, O. Molnar, et al. 1996. Yeasts associated with termites: A phenotypic and genotypic characterization and use of co-evolution for dating evolutionary radiations in asco- and basidiomycetes. Syst. Appl. Microbiol. 19: 265-293. https://doi.org/10.1016/S0723-2020(96)80053-1
- Qinnghe, C., Y. Xiaoyu, N. Tiangui, J. Cheng, and M. Qiugang. 2004. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem. 39: 1561-1566. https://doi.org/10.1016/S0032-9592(03)00290-5
-
Saxena, S., J. Bahadur, and A. Varma. 1991. Production and localisation of carboxymethylcellulase, xylanase and
${\beta}$ -glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34: 668-670. https://doi.org/10.1007/BF00167920 - Shao, W. and J. Wiegel. 1992. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J. Bacteriol. 174: 5848-5853. https://doi.org/10.1128/jb.174.18.5848-5853.1992
- Shin, E. S., M. J. Yang, K. H. Jung, E. J. Kwon, J. S. Jung, S. K. Park, et al. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68: 3496-3501. https://doi.org/10.1128/AEM.68.7.3496-3501.2002
- Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria, pp. 10-72. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic and Professional, New York, U.S.A.
- Tartar, A., M. M. Wheeler, X. Zhou, M. R. Coy, D. G. Boucias, and M. E. Scharf. 2009. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels 2: 25. https://doi.org/10.1186/1754-6834-2-25
- Todaka, N., S. Moriya, K. Saita, T. Hondo, I. Kiuchi, H. Takasu, et al. 2007. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol. Ecol. 59: 592-599. https://doi.org/10.1111/j.1574-6941.2006.00237.x
- Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. https://doi.org/10.1038/nature06269
- Yang, V. W., Z. Zhuang, G. Elegir, and T. W. Jeffries. 1995. Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. J. Ind. Microbiol. 15: 434-441. https://doi.org/10.1007/BF01569971
- Yoshio, W., S. Naoya, and F. Takema. 2003. Isolation of actinomycetes from termites' guts. Biosci. Biotechnol. Biochem. 67: 1797-1801. https://doi.org/10.1271/bbb.67.1797
- Zhang, H. and A. Brune. 2004. Characterization and partial purification of proteinases from the highly alkaline midgut of the humivorous larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol. Biochem. 36: 435-442. https://doi.org/10.1016/j.soilbio.2003.10.021
Cited by
- Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig‐like domain vol.110, pp.12, 2013, https://doi.org/10.1002/bit.24982
- Characterization of a new oxidant-stable serine protease isolated by functional metagenomics vol.2, pp.1, 2012, https://doi.org/10.1186/2193-1801-2-410
- Bacillus subtilis as a Tool for Screening Soil Metagenomic Libraries for Antimicrobial Activities vol.23, pp.6, 2012, https://doi.org/10.4014/jmb.1212.12008
- Nature’s bioreactor: the rumen as a model for biofuel production vol.4, pp.5, 2013, https://doi.org/10.4155/bfs.13.36
- Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0061126
- The cellulolytic system of the termite gut vol.97, pp.18, 2013, https://doi.org/10.1007/s00253-013-5119-z
- Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia vol.97, pp.20, 2012, https://doi.org/10.1007/s00253-013-4699-y
-
Cloning and Characterization of a Novel
${\alpha}$ -Amylase from a Fecal Microbial Metagenome vol.24, pp.4, 2012, https://doi.org/10.4014/jmb.1310.10121 - Alternative hosts for functional (meta)genome analysis vol.98, pp.19, 2012, https://doi.org/10.1007/s00253-014-5961-7
- Occurrence of lignin degradation genotypes and phenotypes among prokaryotes vol.98, pp.23, 2012, https://doi.org/10.1007/s00253-014-6142-4
- Metagenomics: Retrospect and Prospects in High Throughput Age vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/121735
- Omic research in termites: an overview and a roadmap vol.6, pp.None, 2012, https://doi.org/10.3389/fgene.2015.00076
- Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake vol.25, pp.5, 2015, https://doi.org/10.4014/jmb.1408.08062
- Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli vol.18, pp.2, 2012, https://doi.org/10.1016/j.ejbt.2014.12.007
- Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development vol.36, pp.6, 2012, https://doi.org/10.3109/07388551.2015.1083939
- Molecular and Biochemical Characterization of a Novel Xylanase from Massilia sp. RBM26 Isolated from the Feces of Rhinopithecus bieti vol.26, pp.1, 2012, https://doi.org/10.4014/jmb.1504.04021
- From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects vol.10, pp.6, 2012, https://doi.org/10.1002/bbb.1709
- Recent Advances in Function-based Metagenomic Screening vol.16, pp.6, 2018, https://doi.org/10.1016/j.gpb.2018.01.002
- Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites vol.115, pp.51, 2012, https://doi.org/10.1073/pnas.1810550115
- A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria) vol.49, pp.1, 2012, https://doi.org/10.1093/ee/nvz130
- Purification and Biochemical Characterization of Alkalophilic Cellulase from the Symbiotic Bacillus subtilis BC1 of the Leopard Moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae) vol.77, pp.7, 2020, https://doi.org/10.1007/s00284-020-01938-z
- Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri vol.165, pp.1, 2012, https://doi.org/10.1016/j.ijbiomac.2020.09.236
- Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-60850-5
- Screening, cloning, enzymatic properties of a novel thermostable cellulase enzyme, and its potential application on water hyacinth utilization vol.24, pp.3, 2021, https://doi.org/10.1007/s10123-021-00170-4