References
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Chapalamadugu, S. and G. R. Chaudhry. 1992. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol. 12: 357-389. https://doi.org/10.3109/07388559209114232
- Chaudhry, G. R. and A. N. Ali. 1988. Bacterial metabolism of carbofuran. Appl. Environ. Microbiol. 54: 1414-1419.
- de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187.
- Desaint, S., A. Hartmann, N. R. Parekh, and J. C. Fournier. 2000. Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol. Ecol. 34: 173-180. https://doi.org/10.1111/j.1574-6941.2000.tb00767.x
- EPA. 2000. http://www.epa.gov/REDs/factsheets/p155fct.pdf.
- Fahmy, M. A. H., T. R. Fukuto, R. O. Myers, and R. B. March. 1970. The selective toxicity of new N-phosphorothioylcarbamate esters. J. Agric. Food Chem. 18: 793-796. https://doi.org/10.1021/jf60171a014
- Feng, X., L. T. Ou, and A. Ogram. 1997. Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl. Environ. Microbiol. 63: 1332-1337.
- Hardy, K. G. 1993. Plasmid: A Practical Approach, pp. 99-100. 2nd Ed. Oxford University Press, Walton Street, New York.
- Head, I. M., R. B. Cain, and D. L. Suett. 1992. Characterization of a carbofuran-degrading bacterium and investigation of the role of plasmids in catabolism of the insecticide carbofuran. Arch. Microbiol. 158: 302-308. https://doi.org/10.1007/BF00245249
- Kado, C. I. and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373.
- Karns, J. S., W. W. Mulbry, J. O. Nelson, and P. C. Kearney. 1986. Metabolism of carbofuran by a pure bacterial culture. Pestic. Biochem. Physiol. 25: 211-217. https://doi.org/10.1016/0048-3575(86)90048-9
- Karpouzas, D. G., A. Walker, R. J. Froud-Williams, and D. SH Drennan. 1999. Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pestic. Sci. 55: 301-311. https://doi.org/10.1002/(SICI)1096-9063(199903)55:3<301::AID-PS897>3.0.CO;2-F
- Karpouzas, D. G., J. A. W. Morgan, and A. Walker. 2000. Isolation and characterization of 23 carbofuran-degrading bacteria from soils from distant geographical areas. Lett. Appl. Microbiol. 31: 353-358. https://doi.org/10.1046/j.1472-765x.2000.00823.x
- Kim, I. S., J. Y. Ryu, H. G. Hur, M. B. Gu, S. D. Kim, and J. H. Shim. 2004. Sphingomonas sp. strain SB5 degrades carbofuran to a new metabolite by hydrolysis at the furanyl ring. J. Agric. Food Chem. 52: 2309-2314. https://doi.org/10.1021/jf035502l
- Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093.
- Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, et al. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383.
- Korea Crop Protection Association. 2010. Agrochemical Year Book 2010.
- Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England.
- Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174. https://doi.org/10.1093/nar/28.1.173
- Parekh, N. R., A. Hartmann, and J. C. Fournier. 1996. PCR detection of the mcd gene and evidence of sequence homology between the degradative genes and plasmids from diverse carbofuran-degrading bacteria. Soil Biol. Biochem. 28: 1797-1804. https://doi.org/10.1016/S0038-0717(96)00286-6
- Park, H. D. and J. O. Ka. 2003. Genetic and phenotypic diversity of dichlorprop-degrading bacteria isolated from soil. J. Microbiol. 41: 7-15.
- Park, I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy) butyric acid-degrading bacteria from agricultural soil. J. Microbiol. Biotechnol. 13: 243-250.
- Plangklang, P. and A. Reungsang. 2011. Bioaugmentation of carbofuran residues in soil by Burkholderia cepacia PCL3: A small-scale field study. Int. Biodeterior. Biodegrad. 65: 902-905. https://doi.org/10.1016/j.ibiod.2011.02.011
- Rama Krishna, K. and L. Philip. 2011. Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide-enriched cultures. Appl. Biochem. Biotechnol. 164: 1257-1277. https://doi.org/10.1007/s12010-011-9211-5
- Ramanand, K., M. Sharmila, N. Singh, and N. Sethunathan. 1991. Metabolism of carbamate insecticides by resting cells and cell-free preparations of a soil bacterium, Arthrobacter sp. Bull. Environ. Contam. Toxicol. 46: 380-386. https://doi.org/10.1007/BF01688935
- Ramanand, K., M. Sharmila, and N. Sethunathan. 1988. Mineralization of carbofuran by a soil bacterium. Appl. Environ. Microbiol. 54: 2129-2133.
- Sukop, M. and C. G. Cogger. 1992. Adsorption of carbofuran, metalaxyl, and simazine: Koc evalution and relation to soil transport. J. Environ. Sci. Health B27: 565-590.
- Tomasek, P. H. and J. S. Karns. 1989. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in Gram-negative bacteria. J. Bacteriol. 171: 4038-4044. https://doi.org/10.1128/jb.171.7.4038-4044.1989
- Topp, E., R. S. Hanson, D. B. Ringelberg, D. C. White, and R. Wheatcroft. 1993. Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl. Environ. Microbiol. 59: 3339-3349.
- Trotter, D. M., R. A. Kent, and M. P. Wong. 1991. Aquatic fate and effect of carbofuran. Crit. Rev. Environ. Contam. 21: 137-176. https://doi.org/10.1080/10643389109388412
- Yan, Q. X., Q. Hong, P. Han, X. J. Dong, Y. J. Shen, and S. P. Li. 2007. Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS Microbiol. Lett. 271: 207-213. https://doi.org/10.1111/j.1574-6968.2007.00718.x
Cited by
- Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves vol.8, pp.11, 2012, https://doi.org/10.1371/journal.pone.0078613
- Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2 vol.98, pp.19, 2012, https://doi.org/10.1007/s00253-014-5858-5
- Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene vol.18, pp.12, 2012, https://doi.org/10.1111/1462-2920.13409
- Biodegradation ofN-methylatedcarbamates by free and immobilized cells of newly isolated strainEnterobacter cloacaestrain TA7 vol.21, pp.3, 2012, https://doi.org/10.1080/10889868.2017.1404964
- Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture vol.25, pp.12, 2012, https://doi.org/10.1007/s11356-018-1436-1
- Phytoplankton Cultures for Tannin Biodegradation vol.230, pp.7, 2012, https://doi.org/10.1007/s11270-019-4199-5
- Microbiome responses during virulence adaptation by a phloem‐feeding insect to resistant near‐isogenic rice lines vol.9, pp.20, 2012, https://doi.org/10.1002/ece3.5699
- Efficacy of soil-borne Enterobacter sp. for carbofuran degradation: HPLC quantitation of degradation rate vol.60, pp.5, 2020, https://doi.org/10.1002/jobm.201900570