참고문헌
- Anderson, A. J. and E. A. Dawes. 1990. Occurence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.
- American Public Health Association. 1992. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington.
- Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-bhydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
- Carnicero, D., M. Fernández-Valverde, L. M. Canedo, C. Schleissner, and J. M. Luengo. 1997. Octanoic acid uptake in Pseudomonas putida U. FEMS Microbiol. Lett. 149: 51-58. https://doi.org/10.1111/j.1574-6968.1997.tb10307.x
- Ciesielski, S., J. Mo ejko, and G. Przyby ek. 2010. The influence of nitrogen limitation on mcl-PHA synthesis by two newly isolated strains of Pseudomonas sp. J. Ind. Microbiol. Biotechnol. 37: 511-520. https://doi.org/10.1007/s10295-010-0698-5
- Ciesielski, S., T. Pokoj, and E. Klimiuk. 2010. Cultivationdependent and -independent characterization of microbial community producing polyhydroxyalkanoates from raw-glycerol. J. Microbiol. Biotechnol. 20: 853-861. https://doi.org/10.4014/jmb.0909.09038
- Diniz, S. C., M. K. Taciro, J. G. C. Gomez, and J. G. da Cruz Pradella. 2004. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoates production from sugarcane carbohydrates. Appl. Biochem. Biotechnol. 119: 51-69. https://doi.org/10.1385/ABAB:119:1:51
- Durner, R., M. Zinn, B. Witholt, and T. Egli. 2001. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol. Bioeng. 72: 278-288. https://doi.org/10.1002/1097-0290(20010205)72:3<278::AID-BIT4>3.0.CO;2-G
- Furrer, P., R. Hany, D. Rentsch, A. Grubelnik, K. Ruth, S. Panke, and M. Zinn. 2007. Quantitative analysis of bacterial medium-chain-length poly([R]-3-hydroxyalkanoates) by gas chromatography. J. Chromatogr. A 1143: 199-206. https://doi.org/10.1016/j.chroma.2007.01.002
- Haba, E., J. Vidal-Mas, M. Bassas, M. J. Espuny, J. Llorens, and A. Manresa. 2007. Poly 3-(hydroxyalkanoates) produced from oily substrates by Pseudomonas aeruginosa 47T2 (NCBIM 40044): Effect of nutrients and incubation temperature on polymer composition. Biochem. Eng. J. 35: 99-106. https://doi.org/10.1016/j.bej.2006.11.021
- Hartmann, R., R. Hany, E. Pletscher, A. Ritter, B. Witholt, and M. Zinn. 2006. Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: Batch versus chemostat production. Biotechnol. Bioeng. 93: 737-746. https://doi.org/10.1002/bit.20756
- Hoffman, N. and B. H. A. Rehm. 2004. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 237: 1-7. https://doi.org/10.1111/j.1574-6968.2004.tb09671.x
- Huijberts, G. N. M. and G. Eggink. 1996. Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl. Microbiol. Biotechnol. 46: 233-239. https://doi.org/10.1007/s002530050810
- Huisman, G. W., E. Wonink, G. Koning, H. Preusting, and B. Witholt. 1992. Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl. Microbiol. Biotechnol. 38: 1-5.
- Kim, G. J., I. Y. Lee, S. C. Yoon, Y. C. Shin, and Y. H. Park. 1997. Enhanced yield and a high production of medium-chainlength poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 20: 500-505. https://doi.org/10.1016/S0141-0229(96)00179-2
- Lageveen, R. G., G. W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt. 1988. Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924-2932.
- Lee, J., S. Y. Lee, S. Park, and A. P. Middelberg. 1999. Control of fed-batch fermentations. Biotechnol. Adv. 17: 29-48.
- Lee, S. Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
- Lee, S. Y., H. H. Wong, J. Choi, S. H. Lee, S. C. Lee, and C. S. Han. 2000. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
-
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262 - Lopez-Cuellar, M. R., J. Alba-Flores, J. N. Gracida-Rodriguez, and F. Perez-Guevara. 2011. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int. J. Biol. Macromol. 48: 74-80. https://doi.org/10.1016/j.ijbiomac.2010.09.016
-
Ramsay, B. A., I. Saracovan, J. A. Ramsay, and R. H. Marchessault. 1991. Continuous production of long-side-chain poly-
${\beta}$ -hydroxyalkanoates by Pseudomonas oleovorans. Appl. Environ. Microbiol. 57: 625-629. - Ramsay, B. A., I. Saracovan, J. A. Ramsay, and R. Marchessault. 1992. Effect of nitrogen limitation on long-side-chain poly-betahydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl. Environ. Microbiol. 58: 744-746.
- Ren, Q., G. de Roo, B. Witholt, M. Zinn, and L. Thony-Meyer. 2010. Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U. BMC Microbiol. 10: 254-262. https://doi.org/10.1186/1471-2180-10-254
- Riesenberg, D. and R. Guthke. 1999. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51: 422-430. https://doi.org/10.1007/s002530051412
-
Schlegel, H. G., G. Gottschalk, and R. von Bartha. 1961. Formation and utilization of poly-
${\beta}$ -hydroxybutyric acid by knallgas bacteria (Hydrogenomonas). Nature 191: 463-465. https://doi.org/10.1038/191463a0 - Silva-Queiroza, S. R., L. F. Silva, J. G. C. Pradella, E. M. Pereira, and J. G. C. Gomez. 2009. PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. J. Biotechnol. 143: 111-118. https://doi.org/10.1016/j.jbiotec.2009.06.014
- Solaiman, D. K., R. D. Ashby, and T. A. Foglia. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694. https://doi.org/10.1007/s002530000332
- Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2007. Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 71: 423-431.
- Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2007. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 74: 69-77. https://doi.org/10.1007/s00253-006-0655-4
- Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2007. Increasing the yield of mcl-PHA from nonanoic acid by cofeeding glucose during the PHA accumulation stage in twostage fed-batch fermentations of Pseudomonas putida KT2440. J. Biotechnol. 132: 280-282. https://doi.org/10.1016/j.jbiotec.2007.02.023
- Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2009. Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J. Biotechnol. 143: 262-267. https://doi.org/10.1016/j.jbiotec.2009.07.014
피인용 문헌
- Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil vol.29, pp.12, 2012, https://doi.org/10.1007/s11274-013-1410-5
- Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil vol.30, pp.5, 2014, https://doi.org/10.1002/btpr.1914
- Transcriptome remodeling of Pseudomonas putida KT2440 during mcl-PHAs synthesis: effect of different carbon sources and response to nitrogen stress vol.45, pp.6, 2018, https://doi.org/10.1007/s10295-018-2042-4
- High Cell Density Conversion of Hydrolysed Waste Cooking Oil Fatty Acids Into Medium Chain Length Polyhydroxyalkanoate Using Pseudomonas putida KT2440 vol.9, pp.5, 2012, https://doi.org/10.3390/catal9050468
- Pseudomonas Species as Producers of Eco-friendly Polyhydroxyalkanoates vol.27, pp.6, 2019, https://doi.org/10.1007/s10924-019-01422-1
- Proteomic Response of Pseudomonas putida KT2440 to Dual Carbon-Phosphorus Limitation during mcl-PHAs Synthesis vol.9, pp.12, 2019, https://doi.org/10.3390/biom9120796