DOI QR코드

DOI QR Code

Cloning, High-Level Expression, Purification, and Properties of a Novel Endo-${\beta}$-1,4-Mannanase from Bacillus subtilis G1 in Pichia pastoris

  • Vu, Thi Thu Hang (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Quyen, Dinh Thi (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Dao, Thi Tuyet (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Nguyen, Sy Le Thanh (Institute of Biotechnology, Vietnam Academy of Science and Technology)
  • Received : 2011.06.28
  • Accepted : 2011.11.14
  • Published : 2012.03.28

Abstract

A novel gene coding for an endo-${\beta}$-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The ${\beta}$-mannanase showed an identity of 90.2-92.9% ${\leq}95%$) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified ${\beta}$-mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDI-TOF mass spectrometry. The recombinant ${\beta}$-mannanase had an optimum temperature of $45^{\circ}C$ and optimum pH of 6.5. The enzyme was stable at temperatures up to $50^{\circ}C$ (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions ($Hg^{2+}$, $Pb^{2+}$, and $Co^{2+}$) substantially inhibited the recombinant ${\beta}$-mannanase. The chemical additives including detergents (Triton X-100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the ${\beta}$-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.

Keywords

References

  1. Benech, R., X. Li, D. Patton, J. Powlowski, R. Storms, R. Bourbonnais, et al. 2007. Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-beta-1,4-mannanase. Enzyme Microb. Technol. 41: 740-747. https://doi.org/10.1016/j.enzmictec.2007.06.012
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Dhawan, S. and J. Kaur. 2007. Microbial mannanase: An overview of production and applications. Crit. Rev. Biotechnol. 27: 197-216. https://doi.org/10.1080/07388550701775919
  4. Ethier, N., G. Talbot, and J. Sygusch. 1998. Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 64: 4428-4432.
  5. Hatada, Y., N. Takeda, K. Hirasawa, Y. Ohta, R. Usami, Y. Yoshida, et al. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9: 497-500. https://doi.org/10.1007/s00792-005-0460-5
  6. He, X., N. Liu, W. Li, Z. Zhang, B. Zhang, and Y. Ma. 2008. Inducible and constitutive expression of a novel thermostable alkaline ${\beta}$-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb. Technol. 43: 13-18. https://doi.org/10.1016/j.enzmictec.2008.03.011
  7. Julenius, K., A. Molgaard, R. Gupta, and S. Brunak. 2005. Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153-164.
  8. Kanjanavas, P., P. Khawsak, A. Pakpitcharoen, S. Areekit, T. Sriyaphai, K. Pothivejkul, et al. 2009. Over-expression and characterization of the alkalophilic, organic solvent-tolerant, and thermotolerant endo-1,4-${\beta}$-mannanase from Bacillus licheniformis isolate THCM 3.1. Sci. Asia 35: 17-23. https://doi.org/10.2306/scienceasia1513-1874.2009.35.017
  9. Khanongnuch, C., T. Ooi, and S. Kinoshita. 1999. Cloning and nucleotide sequence of ${\beta}$-mannanase and cellulase genes from Bacillus sp. 5H. World J. Microbiol. Biotechnol. 15: 249-258. https://doi.org/10.1023/A:1008893606707
  10. Kweun, M. A., M. S. Lee, J. H. Choi, K. H. Cho, and K. H. Yoon. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14: 1295-1302.
  11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  12. Li, Y., P. Yang, K. Meng, Y. Wang, H. Luo, N. Wu, et al. 2008. Gene cloning, expression, and characterization of a novel betamannanase from Bacillus circulans CGMCC 1416. J. Microbiol. Biotechnol. 18: 160-166.
  13. Li, Y. N., K. Meng, Y. R. Wang, and B. Yao. 2006. A ${\beta}$-mannanase from B. subtilis B36: Purification, properties sequencing, gene cloning and expression in E. coli. Z. Naturforsch. (C) 61: 840-846.
  14. Mendoza, N. S., M. Arai, K. Sugimoto, M. Ueda, T. Kawaguchi, and L. M. Joson. 1995. Cloning and sequencing of beta-mannanase gene from Bacillus subtilis NM-39. Biochim. Biophys. Acta 1243: 552-554. https://doi.org/10.1016/0304-4165(95)00011-Y
  15. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  16. Nielsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Eng. 10: 1-6. https://doi.org/10.1093/protein/10.1.1
  17. Qiao, J., Z. Rao, B. Dong, and Y. Cao. 2010. Expression of Bacillus subtilis MA139 ${\beta}$-mannanase in Pichia pastoris and the enzyme characterization. Appl. Biochem. Biotechnol. 160: 1362-1370. https://doi.org/10.1007/s12010-009-8688-7
  18. Quyen, D. T., S. L. T. Nguyen, and T. T. Dao. 2007. A novel esterase from Ralstonia sp. M1: Gene cloning, sequencing, high-level expression and characterization. Prot. Expr. Purif. 51: 133-140. https://doi.org/10.1016/j.pep.2006.06.009
  19. Quyen, D. T., S. L. T. Nguyen, and V. C. Pham. 2008. Expression of an endo-${\beta}$-1,4-mannanase from B. subtilis G1 in E. coli and its properties. Vietnam. J. Biotechnol. 6: 183-189.
  20. Songsiriritthigul, C., B. Buranabanyat, D. Haltrich, and M. Yamabhai. 2010. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli. Microb. Cell Fact. 9: 20. https://doi.org/10.1186/1475-2859-9-20
  21. Tran, T. T., T. M. P. Nguyen, B. N. Nguyen, and V. C. Phan. 2008. Changes of serum glycoproteins in lung cancer patients. J. Proteomics Bioinform. 1: 011-016. https://doi.org/10.4172/jpb.1000004
  22. Xu, B., L. Duan, X.-H. Tang, J.-J. Li, Y.-L. Mu, Y.-J. Yang, and Z. Huang. 2009. Characterization of 6 Bacillus subtilis ${\beta}$-mannanases and their genes. Afr. J. Biotechnol. 8: 4316-4324.
  23. Yoon, K.-H. and B.-L. Lim. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17: 1688-1694.
  24. Yoon, K. H., S. Chung, and B. L. Lim. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46: 344-349. https://doi.org/10.1007/s12275-008-0045-y
  25. Yoshida, S., Y. Sako, and A. Uchida. 1998. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for an enzyme from Bacillus circulans K-1 that degrades guar gum. Biosci. Biotechnol. Biochem. 62: 514-520. https://doi.org/10.1271/bbb.62.514

Cited by

  1. Comparison of expression systems for the extracellular production of mannanase Man23 originated from Bacillus subtilis B23 vol.12, pp.None, 2012, https://doi.org/10.1186/1475-2859-12-78
  2. Construction of a Shuttle Vector for Protein Secretory Expression in Bacillus subtilis and the Application of the Mannanase Functional Heterologous Expression vol.24, pp.4, 2012, https://doi.org/10.4014/jmb.1311.11009
  3. Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris vol.24, pp.11, 2012, https://doi.org/10.4014/jmb.1401.01061
  4. 된장 분리균 Bacillus sp. YB-1401의 Mannanase 생산성과 효소특성 vol.42, pp.2, 2012, https://doi.org/10.4014/kjmb.1403.03007
  5. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei vol.41, pp.1, 2012, https://doi.org/10.1007/s10295-013-1359-2
  6. Purification and characterization of an alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential vol.238, pp.6, 2014, https://doi.org/10.1007/s00217-014-2170-7
  7. Bacillus amyloliquefaciens 분리균의 Mannanase 생산성과 효소특성 vol.50, pp.2, 2012, https://doi.org/10.7845/kjm.2014.4015
  8. Secretory expression and characterization of a novel thermo-stable, salt-tolerant endo-1,4-β-mannanase of Bacillus subtilis WD23 by Pichia pastoris vol.240, pp.4, 2012, https://doi.org/10.1007/s00217-014-2369-7
  9. Bacillus subtilis 분리균 2주 유래 mannanases의 특성 비교 vol.26, pp.10, 2012, https://doi.org/10.5352/jls.2016.26.10.1113
  10. Kinetic study of a β -mannanase from the Bacillus licheniformis HDYM-04 and its decolorization ability of twenty-two structurally different dyes vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3496-3
  11. Purification, characterization, and overexpression of an endo-1,4-β-mannanase from thermotolerant Bacillus sp. SWU60 vol.33, pp.3, 2012, https://doi.org/10.1007/s11274-017-2224-7
  12. Cloning, expression and characterization of Brugia malayi abundant larval protein transcript-2 (BmALT-2) expressed in Pichia pastoris vol.31, pp.2, 2012, https://doi.org/10.1080/13102818.2016.1264274
  13. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10 vol.17, pp.None, 2012, https://doi.org/10.1186/s12934-018-0973-0
  14. Characterization of Thermostable and Chimeric Enzymes via Isopeptide Bond-Mediated Molecular Cyclization vol.67, pp.24, 2012, https://doi.org/10.1021/acs.jafc.9b01459
  15. Purification and Characterization of Mannanase from Aspergillus awamori for Fruit Juice Clarification vol.27, pp.None, 2012, https://doi.org/10.2174/0929866527666200916142305
  16. Coated recombinant Escherichia coli for delayed release of β-mannanase in the water-based fracturing fluid vol.107, pp.None, 2012, https://doi.org/10.1016/j.procbio.2021.05.014