DOI QR코드

DOI QR Code

Characterization and Fibrinolytic Activity of Acetobacter sp. FP1 Isolated from Fermented Pine Needle Extract

  • Received : 2011.09.23
  • Accepted : 2011.10.31
  • Published : 2012.02.28

Abstract

The strain KCTC 11629BP, isolated from spontaneously fermented pine needle extract (FPE), showed fibrinolysis activity. The isolated strain was analyzed in physiological and biochemical experiments. Based on 16S rDNA sequencing and phylogenic tree analysis, the strain was identified to be a part of the genus Acetobacter, with Acetobacter senegalensis and Acetobacter tropicalis as the closest phylogenetic neighbors. Based on genotypic and phenotypic results, it was proposed that bacterial strain KCTC 11629BP represents a species of the genus Acetobacter. The strain was thusly named Acetobacter sp. FP1. In conclusion, Acetobacter sp. FP1 isolated from FPE possesses fibrinolytic activity.

Keywords

References

  1. Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  2. Bergey, D. H. and J. G. Holt. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed., pp. 71-84. Williams & Wilkins, Baltimore, USA.
  3. Camu, N., T. De Winter, K. Verbrugghe, I. Cleenwerck, P. Vandamme, S. J. Takrama, et al. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73: 1809-1824. https://doi.org/10.1128/AEM.02189-06
  4. Carr, M. E. and J. Hermans. 1978. Size and density of fibrin fibers from turbidity. Macromolecules 11: 46-50. https://doi.org/10.1021/ma60061a009
  5. Mo, A.-Y., B. R. Kwon, S. Kamala-Kannan, K.-J. Lee, B.-T. Oh, D.-H. Kim, et al. 2010. Isolation and characterization of Bacillus polyfermenticus isolated from meju, Korean soybean fermentation starter. World J. Microbiol. Biotechnol. 26: 1099- 1105. https://doi.org/10.1007/s11274-009-0276-z
  6. Kong, Z., Z. Liu, and B. Ding. 1995. Study on the antimutagenic effect of pine needle extract. Mutat. Res. 347: 101-104. https://doi.org/10.1016/0165-7992(95)00026-7
  7. Cleenwerck, I., K. Vandemeulebroecke, D. Janssens, and J. Swings. 2002. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int. J. Syst. Evol. Microbiol. 52: 1551-1558. https://doi.org/10.1099/ijs.0.02064-0
  8. Cleenwerck, I., N. Camu, K. Engelbeen, T. De Winter, K. Vandemeulebroecke, P. De Vos, and L. De Vuyst. 2007. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int. J. Syst. Evol. Microbiol. 57: 1647-1652. https://doi.org/10.1099/ijs.0.64840-0
  9. Entani, E., S. Ohmori, H. Masai, and K. I. Suzuki. 1985. Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J. Gen. Appl. Microbiol. 31: 475-490. https://doi.org/10.2323/jgam.31.475
  10. Franke, I. H., M. Fegan, C. Hayward, L. Graham, E. Stackebrandt, and L. I. Sly. 1999. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int. J. Syst. Evol. Microbiol. 49: 1681-1693.
  11. Gullo, M., C. Caggia, D. V. Luciana, and P. Giudici. 2006. Characterization of acetic acid bacteria in "traditional balsamic vinegar". Int. J. Food Microbiol. 106: 209-212. https://doi.org/10.1016/j.ijfoodmicro.2005.06.024
  12. Jo, H. D., G. H. Kwon, J. Y. Park, J. H. Cha, Y. S. Song, and J. H. Kim. 2011. Cloning and overexpression of aprE3-17 encoding the major fibrinolytic protease of Bacillus licheniformis CH 3-17. Biotechnol. Bioprocess Eng. 16: 352-359. https://doi.org/10.1007/s12257-010-0328-0
  13. Kim, Y., J. Y. Cho, J. H. Kuk, J. H. Moon, J. I. Cho, Y. C. Kim, and K. H. Park. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol. 48: 312-317. https://doi.org/10.1007/s00284-003-4193-3
  14. Kim, Y. S. and D. H. Shin. 2005. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol. 22: 37-45. https://doi.org/10.1016/j.fm.2004.05.002
  15. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  16. Lisdiyanti, P., H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura, and K. Komagata. 2000. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J. Gen. Appl. Microbiol. 46: 147-165. https://doi.org/10.2323/jgam.46.147
  17. Lu, F., L. Sun, Z. Lu, X. Bie, Y. Fang, and S. Liu. 2007. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr. Microbiol. 54: 435-439. https://doi.org/10.1007/s00284-006-0591-7
  18. Ndoye, B., S. Lebecque, R. Dubois-Dauphin, L. Tounkara, A. T. Guiro, C. Kere, et al. 2006. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub- Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 39: 916-923. https://doi.org/10.1016/j.enzmictec.2006.01.020
  19. Park, G. Y., D. Paudyal, Y. M. Park, C. S. Lee, I. D. Hwang, G. Tripathi, and H. S. Cheong. 2008. Effects of pine needle extracts on plasma cholesterol, fibrinolysis and gastrointestinal motility. Biotechnol. Bioprocess Eng. 13: 262-268. https://doi.org/10.1007/s12257-008-0039-y
  20. Park, G. Y., D. Paudyal, I. D. Hwang, G. Tripathi, Y. K. Yang, and H. S. Cheong. 2008. Production of fermented needle extracts from red pine and their functional characterization. Biotechnol. Bioprocess Eng. 13: 256-261. https://doi.org/10.1007/s12257-008-0006-7
  21. Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
  22. Smith, S. A., N. J. Mutch, D. Baskar, P. Rohloff, R. Docampo, and J. H. Morrissey. 2006. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 103: 903-908. https://doi.org/10.1073/pnas.0507195103
  23. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Toit, W. J. D. and I. S. Pretorius. 2002. The occurrence, control and esoteric effect of acetic acid bacteria in winemaking. Ann. Microbiol. 52: 155-179.
  25. Urakami, T., J. Tamaoka, K.-C. Suzuki, and K. Komagata. 1989. Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int. J. Syst. Bacteriol. 39: 50-55. https://doi.org/10.1099/00207713-39-1-50
  26. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  27. Wu, B., L. Wu, L. Ruan, M. Ge, and D. Chen. 2009. Screening of endophytic fungi with antithrombotic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Curr. Microbiol. 58: 522-527. https://doi.org/10.1007/s00284-009-9361-7
  28. Yamada, Y., M. Nunoda, T. Ishikawa, and Y. Tahara. 1981. The cellular fatty acid composition in acetic acid bacteria. J. Gen. Appl. Microbiol. 27: 405-417. https://doi.org/10.2323/jgam.27.405
  29. Yen, G. C., P. D. Duh, D. W Huang, C. L. Hsu, and T. Y.C. Fu. 2008. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 46: 175-185. https://doi.org/10.1016/j.fct.2007.07.012

Cited by

  1. 平成24年度食酢の研究業績 vol.108, pp.10, 2012, https://doi.org/10.6013/jbrewsocjapan.108.734