DOI QR코드

DOI QR Code

Laccase- and Peroxidase-Free Tyrosinase Production by Isolated Microbial Strain

  • Sambasiva Rao, K.R.S. (Department of Biotechnology, Acharya Nagarjuna University) ;
  • Tripathy, N.K. (Department of Zoology, Berhampur University) ;
  • Mahalaxmi, Y. (Bioengineering and Environmental Center, Indian Institute of Chemical Technology) ;
  • Prakasham, R.S. (Bioengineering and Environmental Center, Indian Institute of Chemical Technology)
  • Received : 2011.06.15
  • Accepted : 2011.10.30
  • Published : 2012.02.28

Abstract

Laccase- and peroxidase-free tyrosinase has commercial importance in the production of L-3, 4-dihydroxyphenylalanine (L-DOPA), which is mainly used in the treatment of Parkinson's disease. In the present study, isolation of an actinomycetes microbial strain capable of producing only tyrosinase is reported. Among all soil isolates, three individual colonies revealed black color around the colony in the presence of tyrosine. Further screening for laccase and peroxidase activities using syringaldazine denoted that one of the isolates, designated as RSP-T1, is laccase and peroxidase negative and produces only tyrosinase. The microbe was authenticated as Streptomyces antibioticus based on 16S ribotyping. Effective growth of this isolate was noticed with the use of medium (pH 5.5) containing casein acid hydrolysate (10.0 g/l), $K_2HPO_4$ (5.0 g/l), $MgSO_4$ (0.25 g/l), L-tyrosine (1.0 g/l), and agar (15 g/l). The scanning electron micrograph depicted that the microbe is highly branched and filamentous in nature. The enzyme production was positively regulated in the presence of copper sulfate. The impact of different fermentation parameters on tyrosinase production depicted that the maximized enzyme titer values were observed when this isolate was grown at 6.5 pH and at $30^{\circ}C$ temperature under agitated conditions (220 rpm). Among all the studied physiological parameters, agitation played a significant role on tyrosinase production. Upon optimization of the parameters, the yield of tyrosinase was improved more than 100% compared with the initial yield.

Keywords

References

  1. Claus, H. and H. Decker. 2006. Bacterial tyrosinases. Syst. Appl. Microbiol. 29: 3-14. https://doi.org/10.1016/j.syapm.2005.07.012
  2. Dalfard, A. B., K. Khajeh, M. R. Soudi, H. N. Manesh, B. Ranjbar, and R. H. Sajedi. 2006. Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microbial Technol. 39: 1409-1416. https://doi.org/10.1016/j.enzmictec.2006.03.029
  3. Dawley, R. M. and W. H. Flurkey. 1993. Differentiation of tyrosinase and laccase using 4-hexyl-resorcinol. Phytochemistry. 33: 281-284. https://doi.org/10.1016/0031-9422(93)85503-J
  4. Endo, K., Y. Hayashi, T. Hibi, K. Hosono, T. Beppu, and K. Ueda. 2003. Enzymological characterization of EpoA, a laccaselike phenol oxidase produced by Streptomyces griseus. J. Biochem. 33: 671-677.
  5. Espin, J. C., M. F. Trujano, J. Tudela, and F. Garcia-Canovas. 1997. Study of stereospecificity in pear and strawberry polyphenol oxidases. J. Agric. Food Chem. 45: 1091-1096. https://doi.org/10.1021/jf9605815
  6. Halaouli, S., M. Asther, K. Krus, L. Guo, M. Hamdi, and J. C. Sigoillot. 2005. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J. Appl. Microbiol. 98: 332-343. https://doi.org/10.1111/j.1365-2672.2004.02481.x
  7. Harkin, M. J. and R. J. Obst. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia. 29: 381-387. https://doi.org/10.1007/BF01926734
  8. Hearing, V. J. 1987. Mammalian monophenol monooxigenase (tyrosinase): Purification, properties, and reactions catalyzed. Methods Enzymol. 142: 154-163.
  9. Hullo, M. F., I. Moszer, A. Danchin, and M. I. Verstraete. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430. https://doi.org/10.1128/JB.183.18.5426-5430.2001
  10. Inagaki, H., A. Koga, Y. Bessho, and H. Hori. 1998. The tyrosinase gene from medakafish: Transgenic expression rescues albino mutation. Pigment Cell Res. 1: 1283-1290.
  11. Katz, E., C. J. Thompsons, and D. A. Hopwood. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J. Gen. Microbiol. 129: 2703-2714.
  12. Kumar, M. and W. H. Flurkey. 1991. Activity, isoenzymes and purity of mushroom tyrosinase in commercial preparations. Phytochemistry 30: 3899-3902. https://doi.org/10.1016/0031-9422(91)83430-S
  13. Kupper, U., D. M. Nidermann, G. Travaglini, and K. Lerch. Isolation and characterization of the tyrosinase gene from Neurospora crassa. J. Biol. Chem. 264: 17250-17258.
  14. Kwon, B. S., A. K. Haq, S. H. Pomerantz, and R. Halaban. 1087. Isolation and sequence of cDNA for human tyrosinase that maps at the mouse-c-albino locus. Proc. Natl. Acad. Sci. USA 84: 7473-7477. https://doi.org/10.1073/pnas.84.21.7473
  15. Lerch, K. and L. Ettlinger. 1972. Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427-437. https://doi.org/10.1111/j.1432-1033.1972.tb02549.x
  16. Mahalaxmi, Y., C. S. Rao, G. Suvarnalaxmi, T. Sathish, P. Sudhakar, and R. S. Prakasham. 2008. Rifamycin B production pattern in Nocardia RSP-3 strain and influence of barbital on antibiotic production. Curr. Trends Biotechnol. Pharm. 2: 173-181.
  17. Mahalaxmi, Y., T. Sathish, C. S. Rao, and R. S. Prakasham. 2010. Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Process Biochem. 45: 47-53. https://doi.org/10.1016/j.procbio.2009.08.001
  18. Mason, H. S. 1965. Oxidases. Annu. Rev. Biochem. 34: 595-634. https://doi.org/10.1146/annurev.bi.34.070165.003115
  19. Mayer, A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67: 2318-2331. https://doi.org/10.1016/j.phytochem.2006.08.006
  20. McMahona, A. M., E. M. Doyle, S. Brooks, and K. E. O. Connor. 2007. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme. Microbial Technol. 40: 1435-1441. https://doi.org/10.1016/j.enzmictec.2006.10.020
  21. Porta, G. and R. H. Thomson. 1976. Melanin pigmentation in mammals. Endeavour 35: 32-38. https://doi.org/10.1016/0160-9327(76)90060-0
  22. Romero, H. D., F. Solano, and S. A. Amat. Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl. Environ. Microbiol. 71: 6808-6815. https://doi.org/10.1128/AEM.71.11.6808-6815.2005
  23. Ruan, L., Y. Huang, G. Zhang, D. Yu, and S. Ping. 2002. Expression of the mel gene from Pseudomonas maltophilia in Bacillus thuringiensis. Lett. Appl. Microbiol. 34: 244-248. https://doi.org/10.1046/j.1472-765x.2002.01049.x
  24. Sanchez, A. A. and F. Solano. 1997. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem. Biophys. Res. Commun. 240: 787-792. https://doi.org/10.1006/bbrc.1997.7748
  25. Solano, F., P. Lucas-Elio, E. Fernandez, and A. Sanchez-Amat. 2000. Marinomonas mediterranea MMB-1 transposon mutagenesis: Isolation of a multipotent polyphenol oxidase mutant. J. Bacteriol. 182: 3754-3760. https://doi.org/10.1128/JB.182.13.3754-3760.2000
  26. Suvarna Laxmi, G., T. Sathish, C. S. Rao, P. Brahmaiah, M. Hymavathi, and R. S. Prakasham. 2008. Palm fiber as novel substrate for enhanced xylanase production by isolated Aspergillus sp. RSP-6. Curr. Trends Biotechnol. Pharm. 2: 447-455.
  27. Tamura, K., J. Dudley, M. Nei, and Kumar, S. 2007. Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molec. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  28. Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare L. 2009. L-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Cat. B Enz. 58: 187-193. https://doi.org/10.1016/j.molcatb.2008.12.014
  29. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  30. Wichers, H. J., K. Recourt, M. Hendriks, C. E. M. Ebbelaar, G. Biancone, F. A. Hoeberichts, et al. 2003. Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl. Microbiol. Biotechnol. 61: 336-341. https://doi.org/10.1007/s00253-002-1194-2

Cited by

  1. High level production of tyrosinase in recombinant Escherichia coli vol.13, pp.None, 2012, https://doi.org/10.1186/1472-6750-13-18
  2. A new record of Actinobacteria isolated from soil in Jerusalem and their enzymatic potential vol.4, pp.None, 2012, https://doi.org/10.12688/f1000research.3257.1
  3. Streptomyces spp. in the biocatalysis toolbox vol.102, pp.8, 2012, https://doi.org/10.1007/s00253-018-8884-x
  4. Streptomyces genus as biotechnological tool for pesticide degradation in polluted systems vol.48, pp.10, 2012, https://doi.org/10.1080/10643389.2018.1476958
  5. Tat-Dependent Heterologous Secretion of Recombinant Tyrosinase by Pseudomonas fluorescens Is Aided by a Translationally Fused Caddie Protein vol.85, pp.20, 2012, https://doi.org/10.1128/aem.01350-19
  6. Cloning, Expression, and Characterization of Novel Laccase Enzyme from Native Bacillussubtilis Strain OH67 vol.54, pp.4, 2012, https://doi.org/10.1134/s0026893320040068
  7. Bacillus aryabhattai TFG5-mediated synthesis of humic substances from coir pith wastes vol.20, pp.1, 2012, https://doi.org/10.1186/s12934-021-01538-x