References
- Claus, H. and H. Decker. 2006. Bacterial tyrosinases. Syst. Appl. Microbiol. 29: 3-14. https://doi.org/10.1016/j.syapm.2005.07.012
- Dalfard, A. B., K. Khajeh, M. R. Soudi, H. N. Manesh, B. Ranjbar, and R. H. Sajedi. 2006. Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microbial Technol. 39: 1409-1416. https://doi.org/10.1016/j.enzmictec.2006.03.029
- Dawley, R. M. and W. H. Flurkey. 1993. Differentiation of tyrosinase and laccase using 4-hexyl-resorcinol. Phytochemistry. 33: 281-284. https://doi.org/10.1016/0031-9422(93)85503-J
- Endo, K., Y. Hayashi, T. Hibi, K. Hosono, T. Beppu, and K. Ueda. 2003. Enzymological characterization of EpoA, a laccaselike phenol oxidase produced by Streptomyces griseus. J. Biochem. 33: 671-677.
- Espin, J. C., M. F. Trujano, J. Tudela, and F. Garcia-Canovas. 1997. Study of stereospecificity in pear and strawberry polyphenol oxidases. J. Agric. Food Chem. 45: 1091-1096. https://doi.org/10.1021/jf9605815
- Halaouli, S., M. Asther, K. Krus, L. Guo, M. Hamdi, and J. C. Sigoillot. 2005. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J. Appl. Microbiol. 98: 332-343. https://doi.org/10.1111/j.1365-2672.2004.02481.x
- Harkin, M. J. and R. J. Obst. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia. 29: 381-387. https://doi.org/10.1007/BF01926734
- Hearing, V. J. 1987. Mammalian monophenol monooxigenase (tyrosinase): Purification, properties, and reactions catalyzed. Methods Enzymol. 142: 154-163.
- Hullo, M. F., I. Moszer, A. Danchin, and M. I. Verstraete. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430. https://doi.org/10.1128/JB.183.18.5426-5430.2001
- Inagaki, H., A. Koga, Y. Bessho, and H. Hori. 1998. The tyrosinase gene from medakafish: Transgenic expression rescues albino mutation. Pigment Cell Res. 1: 1283-1290.
- Katz, E., C. J. Thompsons, and D. A. Hopwood. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J. Gen. Microbiol. 129: 2703-2714.
- Kumar, M. and W. H. Flurkey. 1991. Activity, isoenzymes and purity of mushroom tyrosinase in commercial preparations. Phytochemistry 30: 3899-3902. https://doi.org/10.1016/0031-9422(91)83430-S
- Kupper, U., D. M. Nidermann, G. Travaglini, and K. Lerch. Isolation and characterization of the tyrosinase gene from Neurospora crassa. J. Biol. Chem. 264: 17250-17258.
- Kwon, B. S., A. K. Haq, S. H. Pomerantz, and R. Halaban. 1087. Isolation and sequence of cDNA for human tyrosinase that maps at the mouse-c-albino locus. Proc. Natl. Acad. Sci. USA 84: 7473-7477. https://doi.org/10.1073/pnas.84.21.7473
- Lerch, K. and L. Ettlinger. 1972. Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427-437. https://doi.org/10.1111/j.1432-1033.1972.tb02549.x
- Mahalaxmi, Y., C. S. Rao, G. Suvarnalaxmi, T. Sathish, P. Sudhakar, and R. S. Prakasham. 2008. Rifamycin B production pattern in Nocardia RSP-3 strain and influence of barbital on antibiotic production. Curr. Trends Biotechnol. Pharm. 2: 173-181.
- Mahalaxmi, Y., T. Sathish, C. S. Rao, and R. S. Prakasham. 2010. Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Process Biochem. 45: 47-53. https://doi.org/10.1016/j.procbio.2009.08.001
- Mason, H. S. 1965. Oxidases. Annu. Rev. Biochem. 34: 595-634. https://doi.org/10.1146/annurev.bi.34.070165.003115
- Mayer, A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67: 2318-2331. https://doi.org/10.1016/j.phytochem.2006.08.006
- McMahona, A. M., E. M. Doyle, S. Brooks, and K. E. O. Connor. 2007. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme. Microbial Technol. 40: 1435-1441. https://doi.org/10.1016/j.enzmictec.2006.10.020
- Porta, G. and R. H. Thomson. 1976. Melanin pigmentation in mammals. Endeavour 35: 32-38. https://doi.org/10.1016/0160-9327(76)90060-0
- Romero, H. D., F. Solano, and S. A. Amat. Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl. Environ. Microbiol. 71: 6808-6815. https://doi.org/10.1128/AEM.71.11.6808-6815.2005
- Ruan, L., Y. Huang, G. Zhang, D. Yu, and S. Ping. 2002. Expression of the mel gene from Pseudomonas maltophilia in Bacillus thuringiensis. Lett. Appl. Microbiol. 34: 244-248. https://doi.org/10.1046/j.1472-765x.2002.01049.x
- Sanchez, A. A. and F. Solano. 1997. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem. Biophys. Res. Commun. 240: 787-792. https://doi.org/10.1006/bbrc.1997.7748
- Solano, F., P. Lucas-Elio, E. Fernandez, and A. Sanchez-Amat. 2000. Marinomonas mediterranea MMB-1 transposon mutagenesis: Isolation of a multipotent polyphenol oxidase mutant. J. Bacteriol. 182: 3754-3760. https://doi.org/10.1128/JB.182.13.3754-3760.2000
- Suvarna Laxmi, G., T. Sathish, C. S. Rao, P. Brahmaiah, M. Hymavathi, and R. S. Prakasham. 2008. Palm fiber as novel substrate for enhanced xylanase production by isolated Aspergillus sp. RSP-6. Curr. Trends Biotechnol. Pharm. 2: 447-455.
- Tamura, K., J. Dudley, M. Nei, and Kumar, S. 2007. Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molec. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare L. 2009. L-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Cat. B Enz. 58: 187-193. https://doi.org/10.1016/j.molcatb.2008.12.014
- Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
- Wichers, H. J., K. Recourt, M. Hendriks, C. E. M. Ebbelaar, G. Biancone, F. A. Hoeberichts, et al. 2003. Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl. Microbiol. Biotechnol. 61: 336-341. https://doi.org/10.1007/s00253-002-1194-2
Cited by
- High level production of tyrosinase in recombinant Escherichia coli vol.13, pp.None, 2012, https://doi.org/10.1186/1472-6750-13-18
- A new record of Actinobacteria isolated from soil in Jerusalem and their enzymatic potential vol.4, pp.None, 2012, https://doi.org/10.12688/f1000research.3257.1
- Streptomyces spp. in the biocatalysis toolbox vol.102, pp.8, 2012, https://doi.org/10.1007/s00253-018-8884-x
- Streptomyces genus as biotechnological tool for pesticide degradation in polluted systems vol.48, pp.10, 2012, https://doi.org/10.1080/10643389.2018.1476958
- Tat-Dependent Heterologous Secretion of Recombinant Tyrosinase by Pseudomonas fluorescens Is Aided by a Translationally Fused Caddie Protein vol.85, pp.20, 2012, https://doi.org/10.1128/aem.01350-19
- Cloning, Expression, and Characterization of Novel Laccase Enzyme from Native Bacillussubtilis Strain OH67 vol.54, pp.4, 2012, https://doi.org/10.1134/s0026893320040068
- Bacillus aryabhattai TFG5-mediated synthesis of humic substances from coir pith wastes vol.20, pp.1, 2012, https://doi.org/10.1186/s12934-021-01538-x