Abstract
TFT-LCD panel images have non-uniform brightness, noise signal and defect signal. It is hard to divide defect signal because of non-uniform brightness and noise signal, so various divide methods have being developed. In this paper, we suggest method to divide defective regions on TFT-LCD panel image by estimating a menas of two different size of windows, which is suggested by Eikvil et al., and using difference of them. But in this method, the size of detectable defects is restricted by the size of window, hence it has inefficient problem that the size of window have to increase to divide a large defect region. To solve this problem we suggest an algorithm which can divide various size of defects, by using Multi-scale and restrict a detectable size of defects in each scale. To prove an efficiency of suggested algorithm, we show that resulting images of real TFT-LCD panel images and an artificial image with various defects.
TFT-LCD 패널을 저해상도로 획득한 영상은 불균일한 휘도 분포와 노이즈 신호, 그리고 결함 신호로 구성되어 있다. 불균일한 휘도 분포와 노이즈로 인해 결함 신호를 분할하기 어려우며 이를 위해 다양한 분할 방법이 개발되고 있다. 본 논문에서는 공간영역 상에서 Eikvil et al.'s에 의해 제안되어진 크기가 다른 두 개의 창을 두고 각 창의 평균을 계산하고 그 값의 차이를 이용하는 방법을 이용하여 TFT-LCD 패널 이미지 상에 존재하는 결함의 영역을 분할하는 방법을 제안한다. 하지만 이 방법은 창의 크기에 의해 검출 가능한 결함영역의 크기가 제한되어 큰 결함영역을 분할하기 위해서는 창을 키워야 하므로 효율적이지 못한 문제점을 가지고 있다. 이 문제를 해결하기위해 멀티스케일(Multi-scale)을 이용하고, 각 스케일에서 검출 가능한 결함 크기를 제한함으로써 다양한 크기의 결함 영역을 분할 할 수 있는 알고리즘을 제안한다. 알고리즘의 성능을 검증하기위해 다양한 크기의 결함 영역을 만들어 분할되어진 결과와 실제 결함이 존재하는 TFT-LCD 패널 이미지의 분할 결과들을 통해 실제 적용 가능한 알고리즘임을 보인다.