References
- ACI Committee 318. ( 2011). Building code requirements for structural concrete (ACI 318-11) and commentary. Farmington Hills, MI: American Concrete Institute.
- ASCE. (1992). Structural fire protection. Manual No. 78. New York: ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers.
- ASCE 7-10. (2010). Minimum design loads for buildings and other structures. Reston, VA: American Society of Civil Engineers.
- Dassault Systemes Simulia Corporation. (2009). Abaqus 6.9 documentation.
- Elstner, R. C., & Hognestad, E. (1956). Shearing strength of reinforced concrete slabs.ACI Journal Proceedings, 53(1), 29-58.
- Eurocode 2. (1995). Design of concrete structures. Part 1-2: General rules-structural fire design (ENV1992). Brussels: European Committee for Standardization.
- Eurocode 3. (1995). Design of steel structures. Part 1-2: General rules-structural fire design (ENV 1993). Brussels: European Committee for Standardization.
- Ghaffar, A., Chaudhry, M. A., & Ali, M. K. (2005). A new approach for measurement of tensile strength of concrete. Journal of Research (Science), 16(1), 1-9.
- Guandalini, S., Burdet, O. L., & Muttoni, A. (2009). Punching tests of slabs with low reinforcement ratios. ACI Structural Journal, 106(1), 87-95.
- Harmathy, T. Z. (1993) Fire safety design and concrete. Harlow: Longman Scientific & Technical.
- Huang, Z., Burgess, I. W., & Plank, R. J. (1999). Nonlinear analysis of reinforced concrete slabs subjected to fire. ACI Structural Journal, 96(1), 127-135.
- Joint ACI/TMS Committee 216. (2007). Code requirements for determining fire resistance of concrete and masonry construction assemblies. Farmington Hills, MI: American Concrete Institute.
- Lee, J., & Fenves G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- Lim, L., Buchanan, A., Moss, P., & Franssen, J. (2004). Numerical modelling of two-way reinforced concrete slabs in fire. Engineering Structures, 26(8), 1081-1091. https://doi.org/10.1016/j.engstruct.2004.03.009
- Lim, L., & Wade, C. (2002). Experimental fire tests of two-way concrete slabs. Fire Engineering Research Report 02/12. Christchurch (New Zealand): University of Canterbury.
- Lubliner, J., Oliver, J., Oller, S., & On˜ ate, E. (1989). A plasticdamage model for concrete. International Journal of Solids and Structures, 25 299-329.
- Moss, P. J., Dhakal, R. P., Wang, G., & Buchanan, A. H. (2008). The fire behaviour of multi-bay, two-way reinforced concrete slabs. Engineering Structures, 30(12), 3566-3573. https://doi.org/10.1016/j.engstruct.2008.05.028
- Muttoni, A. (2008). Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI Structural Journal, 105(4), 440-450.
- Ruiz, M. F., Muttoni, A., & Kunz, J. (2010). Strengthening of flat slabs against punching shear using post-installed shear reinforcement. ACI Structural Journal, 107(4), 434-442.
- Tian,Y., Jirsa, J. O., Bayrak, O.,Widianto,&Argudo, J. F. (2008). Behavior of slab-column connections of existing flat-plate structures. ACI Structural Journal, 105(5), 561-569.
- Vermeer, P. A., & De Borst, R. (1984). Non-associated plasticity for soils, concrete, and rock. HERON, 29(3), 1-62.
- Wang, G. (2004). Performance of reinforced concrete flat slabs exposed to fire. Fire Engineering Research report number 06/2. Christchurch (New Zealand): University of Canterbury
Cited by
- Review of the Punching Shear Behavior of Concrete Flat Slabs in Ambient and Elevated Temperature vol.4, pp.4, 2012, https://doi.org/10.1260/2040-2317.4.4.259
- Punching Shear Behavior of Concrete Flat Slabs in Elevated Temperature and Fire vol.18, pp.5, 2012, https://doi.org/10.1260/1369-4332.18.5.659
- Performance evaluations of PSC panel from impact-induced fire loading vol.67, pp.23, 2012, https://doi.org/10.1680/macr.14.00173
- The Hysteresis Performance and Restoring Force Model for Corroded Reinforced Concrete Frame Columns vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/7615385
- Progressive Collapse Analysis of a Typical Super-Tall Reinforced Concrete Frame-Core Tube Building Exposed to Extreme Fires vol.53, pp.1, 2012, https://doi.org/10.1007/s10694-016-0566-6
- Innovative strategies for enhancing fire performance of high-strength concrete structures vol.21, pp.11, 2012, https://doi.org/10.1177/1369433218754335
- Numerical investigation on punching shear of RC slabs exposed to fire vol.23, pp.3, 2019, https://doi.org/10.12989/cac.2019.23.3.217