DOI QR코드

DOI QR Code

Molecular Dynamics Study of [C10mim][Br] Aggregation

분자동역학을 이용한 [C10mim][Br] 의 응집에 관한 연구

  • Received : 2012.01.05
  • Accepted : 2012.05.31
  • Published : 2012.08.01

Abstract

Ionic liquids (ILs) existing in the liquid ion form under standard conditions show a unique properties. 1-10-Alkyl-3-methyl-imidazolium bromide ([C10mim][Br]) is one of the ILs that shows amphiphilic characteristics under specific conditions. This property enables it to function as a surfactant, and therefore, it finds applications in a wide range of areas. In this study, we tried to predict the behavior, especially the aggregation aspect, of [C10mim][Br] in an aqueous solution using molecular dynamics (MD) simulations. The canonical (NVT) ensemble was used to relax the system and trace the trajectory of atoms. Several case studies were simulated and the interaction among [C10mim]+, [Br]-, and water was analyzed using the radial distribution function of each atom. The density distribution function was also used for the structural analysis of the entire system. We used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code for the present MD simulations.

Ionic Liquids (ILs) 는 표준상태에서 액체이온으로 존재하는 물질로 여러 가지 방법으로 다양한 특성을 띄게 할 수 있다. 이런 성질을 적절하게 이용하여 계면활성제 등 다양한 분야로의 응용이 가능하다. ILs의 한 종류인 1-10-alkyl-3-methylimidazolium bromide([C10mim][Br]) 은 특정한 환경에서 양친매성을 가진다. 이번 논문에서 우리는 분자동역학을 이용하여 수용액에서의 [C10mim][Br]의 응집 거동에 대한 연구를 진행하였다. 정준모듬(canonical ensemble)을 이용하여 모사 간 시스템의 부피와 온도를 일정하게 유지시키고 5ns 동안의 전산모사를 통하여 얻은 radial distribution function(RDF)을 이용하여 [C10mim][Br]과 물 분자간의 상호작용 및 그 분포의 특성에 대하여 논의하였다. 분자동역학적 계산을 위하여 LAMMPS 코드를 사용하였고, VMD 코드를 이용하여 후처리(post processing)을 진행하였다.

Keywords

References

  1. Earle, M. J. and Seddon, K. R., 2000, "Ionic Liquids. Green Solvents for the Future," Pure and Applied Chemistry, Vol. 72, No. 7, pp. 1391-1398. https://doi.org/10.1351/pac200072071391
  2. Welton, T., 1999, "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis," Chemical Reviews, Vol. 99, No. 8, pp. 2071-2084. https://doi.org/10.1021/cr980032t
  3. Dupont, J., de Souza, R. F. and Suarez, P. A. Z., 2002, "Ionic Liquid (Molten Salt) Phase Organometallic Catalysis," Chemical Reviews, Vol. 102, No. 10, pp. 3667-3692. https://doi.org/10.1021/cr010338r
  4. Ranke, J., Stolte, S., Stormann, R., Arning, J. and Jastorff, B., 2007, "Design of Sustainable Chemical Prducts - The Example of Ionic Liquids," Chemical Reviews, Vol. 107, No. 6, pp. 2183-2206. https://doi.org/10.1021/cr050942s
  5. Greaves, T. L. and Drummond, C. J., 2008, "Ionic Liquids as Amphiphile Self-Assembly Media," Chemical Society Reviews, Vol 37, No 8, pp. 1709-1726. https://doi.org/10.1039/b801395k
  6. Bhargava, B. L. and Klein, M. L., 2009, "Molecular Dynamics Studies of Cation Aggregation in the Room Temperature Ionic Liquid [C10mim][Br] in Aqueous Solution," The Journal of Physical Chemistry(A), Vol. 113, No. 10, pp. 1898-1904. https://doi.org/10.1021/jp8068865
  7. Zhao, Y., Gao, S., Wang, J. and Tang, J., 2008, "Aggregation of Ionic Liquids [Cnmim]Br (n=4, 6, 8, 10, 12) in D2O: A NMR Study," The Journal of Physical Chemistry(B), Vol. 112, No. 7, pp. 2031-2032. https://doi.org/10.1021/jp076467e