DOI QR코드

DOI QR Code

Preventing Freezing of Condensate inside Tubes of Air-Cooled Condenser

공랭식 응축기 관내 응축수 동결 방지에 관한 연구

  • Joo, Jeong-A (Dept. of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Hwang, In-Hwan (Dept. of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Cho, Young-Il (Mechanical Engineering and Mechanics, Drexel Univ.) ;
  • Lee, Dong-Hwan (Dept. of Mechanical Design Engineering, Chonbuk Nat'l Univ.)
  • 주정아 (전북대학교 기계설계학과) ;
  • 황인환 (전북대학교 기계설계학과) ;
  • 조영일 (미국 드렉셀대학교 기계공학과) ;
  • 이동환 (전북대학교 기계설계학과)
  • Received : 2012.01.30
  • Accepted : 2012.05.22
  • Published : 2012.08.01

Abstract

An air-cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air-cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air-cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred.

공랭식 응축기는 대기중의 공기를 이용해 스팀을 응축수로 전환시키는 발전용 냉각설비이다. 추운 겨울철, 공랭식 응축기는 열교환부 관내의 응축수가 동결되어 튜브 자체가 터지는 심각한 동파 문제를 수반한다. 이는 기존 공랭식 응축기 시스템이 가지는 튜브 출구의 구조적 문제로 인한 응축되지 않은 스팀 및 비응축성 기체의 역류가 주요 원인이 된다. 따라서 본 연구에서는 유사 모의 공랭식 응축기 시스템을 설계 및 제작하여 기존의 공랭식 응축기 시스템이 가지고 있는 문제점을 구현하고, 이를 해결하기 위한 설계가 가능함을 실험적으로 증명하였다. 기존 공랭식 응축기 시스템의 작동 원리와 유사한 조건에서 실시한 실험에서 역류에 의한 튜브 동결을 관찰할 수 있었다. 반면 신개념 공랭식 응축기 시스템을 적용한 실험에서는 역류 및 동결 발생없이 열교환이 잘 이루어짐을 확인할 수 있었다.

Keywords

References

  1. Wilber, K.R. and Zammit, K., 2005, "Development of Procurement Guidelines for Air-Cooled Condensers," Vol. 11, pp. 8-9.
  2. Kroger, D.G., 2004, "Air-Cooled Heat Exchangers and Cooling Towers: Thermal-Flow Performance Evaluation and Design," Pennwell Corp, Vol. 1, pp. 1-50.
  3. Putman, R.E. and Jaresch, D., "The Impact of Air-Cooled Condensers on Plant Design and Operations," pp. 11-12.
  4. Heyns, J.A., 2008, "Performance Characteristics of and Air-Cooled Steam Condenser Incorporating a Hybrid (Dry/Wet) Dephlegmator," University of Stellenbosch.
  5. Van Rooyen, J. and Kroger, D., 2008, "Performance Trends of an Air-Cooled Steam Condenser Under Windy Conditions," Journal of Engineering for Gas Turbines and Power, Vol. 130, pp. 4-10.
  6. Honing, W., 2009, "Steam Flow Distribution in Air-Cooled Condenser for Power Plant Application."
  7. Giampietro, F., 1997, "Analysis of Vapor Back Flow in Single-Pass Air-Cooled Condensers," International Journal of Heat and Mass Transfer, Vol. 40, pp. 3969-3979. https://doi.org/10.1016/S0017-9310(97)00024-0
  8. Giampietro, F., 2000, "Effect of Disuniformities in Vapor Saturation Pressure and Coolant Velocity on Vapor Back Flow Phenomena in Single-Pass Air-Cooled Condensers," International Journal of Heat and Mass Transfer, Vol. 43, pp. 147-159. https://doi.org/10.1016/S0017-9310(99)00124-6
  9. Berg, W. and Berg, J., 1980, "Flow Patterns for Isothermal Condensation in One-Pass Air-Cooled Heat Exchangers," Heat Transfer Engineering, Vol. 1, pp. 21-31. https://doi.org/10.1080/01457638008939565
  10. FABBRI, G.A., 1997, "Analysis of the Noncondensable Contaminant Accumulation in Single-Pass Air-Cooled Condensers," Heat Transfer Engineering, Vol. 18, pp. 50-60. https://doi.org/10.1080/01457639708939896
  11. Fabbri, G., 1996, "Analysis of the Effectiveness of Single-Pass Air-Cooled Condensers," in Proceedings of the Second European Thermal-Sciences Conference, Rome, Italy.
  12. Schulenberg, F.J. and A.S.o.M. Engineers, 1965, "Finned Elliptical Tubes and Their Application in Air-Cooled Heat Exchangers," in Journal of Eng. for Industry, Trans of ASME.
  13. Rozenman, T. and Pundyk, J., 1974, "Effect of Unequal Heat Loads on the Performance of Air-Cooled Condensers," Vol. 70, pp. 178-184.
  14. Larinoff, M., Moles, W. and Reichhelm, R., 1974, "Design and Specification of Air-Cooled Steam Condensers," Chemical Engineering, Vol. 85, pp. 86-94.
  15. Brown, J., Benkley, G. and Bendley, G., 1974, "Heat Exchangers in Cold Service-A Contractor's View," Chemical Engineering, Vol. 70, pp. 59-62.
  16. Rabas, T., 1981, "Tubeside Exit Condition with Complete Condensation in Multitube Cross-Flow Heat Exchangers," Chemical Engineering Communications, Vol. 10, pp. 13-24. https://doi.org/10.1080/00986448108910922
  17. Breber, G., Palen, J. and Taborek, J., 1982, "Study on Noncondensable Vapor Accumulation in Air-Cooled Condensers," Heat Exchangers, Vol. 18, pp. 263-268.
  18. Incropera, F.P., et al., 2011, "Fundamentals of Heat and Mass Transfer," Whiley, Chap 11.
  19. Cengel, Y.A. and Boles, M.A., 2006, "Thermodynamics: and Engineering Approach, McGraw-Hill Higher Education.
  20. http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html.

Cited by

  1. Anti-Freezing Mechanism Analysis of a Finned Flat Tube in an Air-Cooled Condenser vol.10, pp.11, 2017, https://doi.org/10.3390/en10111872