DOI QR코드

DOI QR Code

A study on the Interior Structure and Scattered Radiation Measurement of Radiotherapy Room

방사선 치료실의 실내 구조와 산란선 측정에 관한 연구

  • Kim, Min-Ae (Department of Radiology, pusan National University Yangsan Hospital) ;
  • Kwon, Yong-Dae (Department of Radiological Technology, Dong-Eui Institute of Technology) ;
  • Je, Jae-Yong (Department of Radiological Technology, Dong-Eui Institute of Technology)
  • 김민애 (양산부산대학교병원 영상의학과) ;
  • 권용대 (동의과학대학교 방사선과) ;
  • 제재용 (동의과학대학교 방사선과)
  • Received : 2012.03.23
  • Accepted : 2012.06.22
  • Published : 2012.06.30

Abstract

This research aims at examining the amount of scattered radiation generated during irradiation by adhering structures with different sizes of aluminum prominence and depression to the inside of a radiotherapy room. The irregular aluminum structures were stuck to the wall of a radiotherapy room, and the scattered radiation generated during irradiation was measured. The sizes of the aluminum prominence and depression were $1.5{\times}1.5$, $3{\times}3$, and $5{\times}5\;cm^2$ with the width of 60 cm and the height of 60 cm. The distance between TLD and the wall of the radiotherapy room to measure scattered radiation was 310 cm, and the used radiation energy was 6 MV and 15 MV generated from a linear accelerator. The research result showed that the irradiation amount at 6 MV was 100, and at 300 cGy the scattered radiation decreased by the installation of the structure with aluminum prominence and depression, but at 200 cGy, only the scattered radiation of the uneven structure of $5{\times}5\;cm^2$ decreased. At 15 MV, the irradiation amount was 200 cGy, and at 300 cGy, the scattered radiation was reduced when the rugged aluminum structure was set up, but at 100 cGy, similar result values were produced regardless of the uneven structure. Consequently, installation of an additional structure with aluminum prominence and depression in the present interior structure can decreased the stochastic effect of the scattered radiation generated from the wall of a radiotherapy room and patients.

연구는 방사선 치료실 내부에 알루미늄 요철 크기가 다른 구조물을 부착하여 방사선 조사 중 발생되는 산란선량을 알아보고자 한다. 알루미늄 요철구조물을 방사선 치료실 벽면에 부착하고, 방사선 조사 중 발생하는 산란선을 측정대상으로 하였다. 알루미늄 요철의 크기는 $1.5{\times}1.5$, $3{\times}3$, $5{\times}5\;cm^2$이고 크기는 가로${\times}$세로가 $60{\times}60\;cm^2$ 이다. 산란선 측정을 위한 TLD와 치료실 벽면까지의 거리는 310 cm이며 사용된 방사선 에너지는 선형가속기에서 발생되는 6MV, 15 MV 이다. 실험 결과 6 MV에서는 조사선량이 100, 300 cGy에서는 알루미늄 요철 구조물을 설치함으로써 산란선이 감소되었으나 200 cGy에서는 $5{\times}5\;cm^2$의 요철구조물에서만 산란선이 감소되었다. 15 MV에서는 조사선량이 200, 300 cGy에서는 알루미늄 요철구조물을 설치함으로써 산란선이 감소되었으나 100 cGy에서는 요철구조물에 상관없이 비슷한 결과 값을 나타내었다. 따라서 실내구조에 부가적으로 알루미늄 요철 구조물을 설치하는 것이 방사선 치료실 벽면에서 발생하는 산란선과 환자의 확률적 영향을 감소시킬 수 있는 방법이라 할 수 있다.

Keywords

References

  1. Attix FH, Lopez F, Owolabi S and Paliwal BR, "Electron contamination in 60Co gamma-ray beams", Med Phys, Vol. 10, No. 3, pp.301-306, 1983. https://doi.org/10.1118/1.595305
  2. Petti PL, Goodman MS, Gabriel TA and Mohan R "Investigation of buildup dose from electron contamination of clinical photon beams", Med Phys, Vol. 10, No. 1, pp.18-24, 1983. https://doi.org/10.1118/1.595287
  3. Ling CC, Schell. MC and Rustgi SN. "Magnetic analysis of the radiation components of a 10 MV photon beam", Med Phys, Vol. 9, No. 1, pp.20-26, 1982. https://doi.org/10.1118/1.595066
  4. Padikal TN and Deye JA, "Electron contamination of a high-energy X-ray beam", Phys Med Biol, Vol. 23, No. 6, pp.1086-1092, 1978. https://doi.org/10.1088/0031-9155/23/6/004
  5. Velkely DE, Manson DJ and Purdy JA, Oliver GD, "Build-up region of megavoltage photon radiation sources", Med Phys, Vol. 2, No. 1, pp.14-19, 1975. https://doi.org/10.1118/1.594158
  6. Gagon W and Grant W, "Surface dose from megavoltage therapy machines," Radiology, Vol. 117, pp.705-708, 1975. https://doi.org/10.1148/117.3.705
  7. Pierce DA, Preston DL, "Radiation-related cancer risks at low doses among atomic bomb survivors", Radiat Res, Vol. 154, No. 2, pp.178-186, 2000. https://doi.org/10.1667/0033-7587(2000)154[0178:RRCRAL]2.0.CO;2
  8. Ing H, Nelson WR and Shore RA, "Unwanted photon and neutron radiation resulting from collimated photon beams interacting with the body of radiotherapy patients", Med Phys, Vol. 9, No. 1, pp.27-33, 1982. https://doi.org/10.1118/1.595137
  9. Nath R, Epp ER, Langhlin JS, Swanson WP and Bond VP, "Neutrons from high-energy X-ray medical accelerators : An estimate of risk to the radiotherapy patient", Med Phys, Vol 11, No. 3, pp.231-241, 1984. https://doi.org/10.1118/1.595497
  10. Agosteo S, Para AF, Gerardi F, Silari M, Torresin A and Tosi G, "Photoneutron dose in soft tissue phantoms irradiated by 25 MV X-rays", Phys Med Biol, Vol. 38, No. 10, pp.1509-1528, 1993. https://doi.org/10.1088/0031-9155/38/10/012
  11. Roy SC, Sandison GA, "Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beams", Med Phys, Vol. 27, No. 8, pp.1800-1803, 2000 https://doi.org/10.1118/1.1287438

Cited by

  1. Variation of Indoor Average Ozone Concentration within the Radiation Therapy Room by High Energy Radiation vol.10, pp.3, 2016, https://doi.org/10.7742/jksr.2016.10.3.171