DOI QR코드

DOI QR Code

Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea

  • Aydin, Mehmet (Department of Biological Environment, Kangwon National University) ;
  • Jung, Yeong-Sang (Department of Biological Environment, Kangwon National University) ;
  • Lee, Hyun-Il (Department of Biological Environment, Kangwon National University) ;
  • Kim, Kyung-Dae (Department of Biological Environment, Kangwon National University) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
  • Received : 2012.01.03
  • Accepted : 2012.01.20
  • Published : 2012.02.29

Abstract

The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to $0.8cal\;cm^{-3}^{\circ}C^{-1}$ for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between $0.37{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for dry (medium-textured) soil and $4.01{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value ($1.1{\times}10^{-2}cm^2s^{-1}$), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.

Keywords

References

  1. Abu-Hamdeh, N. H., Reeder, R.C., 2000. Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J., 64(4), 1285-1290. https://doi.org/10.2136/sssaj2000.6441285x
  2. Akinyemi, O. D., Olowofela, J. A., Sauer, T. J., Fasunan, O. O., 2004. Spatio-temporal variability and fractal characterization of the thermal conductivity measured in situ in a natural clay soil. Journal of Geophysics and Engineering, 1(4), 252-258. https://doi.org/10.1088/1742-2132/1/4/002
  3. Aydin, M., 1993. Estimation of thermal properties of widely distributed red soils in the Harran Plain. 2nd International Meeting on Red Mediterranean Soils. University of Cukurova, Faculty of Agriculture Press, Adana-Turkey, 149-151.
  4. Aydin, M., Huwe, B., 1993. Test of a combined soil moisture/soil heat simulation model on a bare field soil in Southern Turkey. Z. Pflanzenern. Bodenk., 156, 441-446. https://doi.org/10.1002/jpln.19931560511
  5. Balland V., Arp, P. A., 2005. Modeling soil thermal conductivities over a wide range of conditions. J. Environ. Eng. Sci., 4, 549-558. https://doi.org/10.1139/s05-007
  6. Becker, B. R., Misra, A., Fricke, B. A., 1992. Development of correlations for soil thermal conductivity. International Communications in Heat and Mass Transfer, 19(1):59-68. https://doi.org/10.1016/0735-1933(92)90064-O
  7. Bendjoudi, H., Cheviron, B., Guerin, R., Tabbagh, A., 2005. Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons (Aube, France) experimental data. Hydrological Processes, 19, 3735-3745. https://doi.org/10.1002/hyp.5856
  8. Campbell, G. S., 1985. Soil Physics with Basic: Transport Models for Soil-Plant Systems. Elsevier. Amsterdam, Oxford, 150 pp.
  9. Cass, A., Campbell, G.S., Jones, T.L., 1984. Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. J., 48, 25-32. https://doi.org/10.2136/sssaj1984.03615995004800010005x
  10. Dahiya, R., Ingwersen, J., Streck, T., 2007. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil & Tillage Research, 96(1-2), 52-63. https://doi.org/10.1016/j.still.2007.02.004
  11. De Vries, D. A., 1966. Thermal properties of soils. In: Physics of Plant Environment (2nd ed., edited by W.R. van Wijk). North-Holland Publishing Company, Amsterdam, 210-235.
  12. Ekwue, E. I., Stone, R. J., Bhagwat, D., 2006. Thermal conductivity of some compacted Trinidadian soils as affected by peat content. Biosystems Engineering, 94(3), 461-469. https://doi.org/10.1016/j.biosystemseng.2006.03.002
  13. Guo, G., Zhang, H., Araya, K, Jia, H., Ohomiya, K., Matsuda, J., 2007. Improvement of salt-affected soils, part 4: Heat transfer coefficient and thermal conductivity of salt-affected soils. Biosystems Engineering, 96 (4), 593-603. https://doi.org/10.1016/j.biosystemseng.2006.12.003
  14. Hillel, D., 1998. Environmental Soil Physics. Academic Press. San Diego, London, 771 pp.
  15. Huwe, B., van der Ploeg, R. R., 1990. Modelle zur Simulation des Stickstoffhaushaltes von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung. Eigenverlag des Instituts fur Wasserbau der Universitaet Stuttgart, 213 pp.
  16. Ju, ZQ., Ren, TS., Hu, CS., 2011. Soil thermal conductivity as influenced by aggregation at intermediate water contents. Soil Sci. Soc. Am. J., 75(1), 26-29. https://doi.org/10.2136/sssaj2010.0050N
  17. Kim, S.O., Suh, M.S., Kwak, C. H., 2005. Climatological characteristic in the variation of soil temperature in Korea. Journal of Korean Earth Science Society, 26(1):93-105.
  18. Koo, M. H., Kim, Y. J., Suh, M. C., Suh, M. S., 2003. Estimating thermal diffusivity of soils in Korea using temperature time series data. Journal of the Geological Society of Korea, 39(3): 301-317.
  19. Leong, W. H. Tarnawski, V. R., Gori, F., Buchan, G. D., Sundberg, J., 2005. Inter-particle contact heat transfer model: an extension to soils at elevated temperatures. International Journal of Energy Research, 29(2), 131-144. https://doi.org/10.1002/er.1046
  20. Liu, H., Wang, B., Fu, C., 2008. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China. Advances in Atmospheric Sciences, 25(5), 757-764. https://doi.org/10.1007/s00376-008-0757-2
  21. Logsdon, S. D., Green, T. R., Bonta, J. V., Seyfried, M, S., Evett, S. R., 2010. Comparison of electrical and thermal conductivities for soils from five states. Soil science, 175(12), 573-578. https://doi.org/10.1097/SS.0b013e3181fce006
  22. Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J., 71(1), 8-14. https://doi.org/10.2136/sssaj2006.0041
  23. Lu, S., Ren, T. Yu, Z.., Horton, R., 2011. A method to estimate the water vapour enhancement factor in soil. European Journal of Soil Science, 62, 498-504. https://doi.org/10.1111/j.1365-2389.2011.01359.x
  24. Markle, J. M., Schincariol, R. A., Sass, J. H., Molson, J. W., 2006. Characterizing the two-dimentional thermal conductivity distribution in a sand and gravel aquifer. Soil Sci. Soc. Am. J., 70, 1281-1294. https://doi.org/10.2136/sssaj2005.0293
  25. Mochizuki, H,, Mizoguchi, M., Miyazaki, T., 2008. Effects of NaCl concentration on the thermal conductivity of sand and glass beads with moisture contents at levels below field capacity. Soil Science and Plant Nutrition, 54(6), 829-838. https://doi.org/10.1111/j.1747-0765.2008.00321.x
  26. NAAS, 1999. Taxonomical Classification of Korean Soils. National Academy of Agricultural Sciences.
  27. O'Donnell, J. A., Romanovsky, V. E., Harden, J. W., McGuire, A. D., 2009. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska. Soil Science, 174(12), 646-651. https://doi.org/10.1097/SS.0b013e3181c4a7f8
  28. Sakaguchi, I., Momose, T., Kasubuchi, T., 2007. Decrease in thermal conductivity with increasing temperature in nearly dry sandy soil. European Journal of Soil Science, 58(1), 92-97. https://doi.org/10.1111/j.1365-2389.2006.00803.x
  29. Scott, H. D., 2000. Soil Physics: Agricultural and Environmental Applications. Iowa State University Press, 425 pp.
  30. Song, K. C., Jung, Y. S., Kim, B. C., Ahn, Y. S., Um, K. T., 1992. Physical properties and apparent thermal diffusivity of the soils where soil temperature was measured regularly. J. Korean Soc. Soil Sci. Fert., 25(3), 220-230.
  31. Tarnawski, V. R., Momose, T., Leong, W. H., 2009. Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique 59(4), 331-338. https://doi.org/10.1680/geot.2009.59.4.331
  32. Usowicz, B., Lipiec, J., Ferrero, A., 2006. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. International Journal of Heat and Mass Transfer, 49(25-26), 5010-5017. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.023
  33. Wang, K., Wang, P., Liu, J., Sparrow, M., Haginoya, S., Zhou, X., 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the Western Tibetan Plateau. Boundary-Layer Meteorology, 116:117-129. https://doi.org/10.1007/s10546-004-7403-z
  34. Yang, K., Koike, T., 2005. Comments on "estimating soil water contents from soil temperature measurements by using an adaptive Kalman filter". Journal of Applied Meteorology, 44, 546-550. https://doi.org/10.1175/JAM2215.1
  35. Yesilsoy, M. S., Aydin, M., 1991. Soil Physics (in Turkish). University of Cukurova, Faculty of Agriculture, Text-Book No:124, 228 pp.
  36. Yun, T. S., Santamarina, J. C., 2008. Fundamental study of thermal conduction in dry soils. Granular Matter, 10(3), 197-207. https://doi.org/10.1007/s10035-007-0051-5
  37. Zhang, Y. S., Sonn, Y. K., Jung, S. J., Lee, G. J., Kim, M. S., Kim, S. K., Lee, J. Y., Pyun, I. H., 2006. Mineral composition of the soils derived from residuum and collovium. Korean J. Soil Sci. Fert., 39(5):245-252.