DOI QR코드

DOI QR Code

돼지의 품종 및 성장 단계에 따른 등심조직의 단백질 발현 양상 비교, 분석

Protein Expression in Pig Species Longissimus dorsi Muscles among Different Breeds and Growth Stages

  • 김병욱 (경남과학기술대학교 동물소재공학과) ;
  • 김삼웅 (경남과학기술대학교 양돈과학기술센터) ;
  • 홍연희 (경남과학기술대학교 동물소재공학과) ;
  • 정미애 (경남과학기술대학교 동물소재공학과) ;
  • 류연선 (우석대학교 동물건강관리학과) ;
  • 박화춘 (남원 다산종돈) ;
  • 정종현 (남원 다산종돈) ;
  • 권영민 (알칸소 주립대학교) ;
  • 최인순 (신라대학교 생물과학과) ;
  • 이상석 (순천대학교 동물자원과학과) ;
  • 김철욱 (경남과학기술대학교 동물소재공학과) ;
  • 조광근 (경남과학기술대학교 동물소재공학과)
  • Kim, Byung-Uk (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Kim, Sam-Woong (Swine Science & Technology Center, Gyeongnam National University of Science and Technology) ;
  • Hong, Yeon-Hee (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Jeong, Mi-Ae (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Ryu, Yeon-Sun (Department of Animal Health Management, Woosuk University) ;
  • Park, Hwa-Chun (Dasan Genetics) ;
  • Jung, Jong-Hyun (Dasan Genetics) ;
  • Kwon, Young-Min (Department of Poultry Science, University of Arkansas) ;
  • Choi, In-Soon (Department of Biological Science, Silla University) ;
  • Lee, Sang-Suk (Department of Animal Science and Technology, Sunchon National University) ;
  • Kim, Chul-Wook (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Cho, Kwang-Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
  • 투고 : 2012.05.29
  • 심사 : 2012.06.11
  • 발행 : 2012.06.30

초록

Landrace와 Berkshire의 longissimus dorsi muscle으로부터 단백질 발현양상의 차이를 보기 위하여 2-DE실험을 통하여 분석한 결과 Landrace 에서 특이적으로 발현 양이 증가한 단백질들은 serum albumin precursor, troponin T (TnT; slow skeletal muscle), myoglobin였다. Berkshire에서 특이적으로 발현 양이 증가한 단백질들은 heat shock 27 kDa protein 1, troponin T (fast skeletal muscle), muscle creatine kinase, phosphoglucomutase 1, triosephosphate isomerase (Tpi 1), adenylate kinase isoenzyme 1 (AK1)였다. Landrace의 longissimus dorsi muscle에서는 slow skeletal muscle과 연관된 단백질들이 발현된 반면에 Berkshire에서는 fast skeletal muscle, 물질대사경로, 에너지 생산과 관련된 단백질들이 발현되었다. Berkshire를 이용하여 성장단계별로 단백질 발현을 분석해 본 결과 growing Berkshire에서 발현이 증가한 단백질은 aldehyde dehydrogenase 1 family, member L1 (ALDHL1)와 muscle creatine kinase이고 finishing Berkshire에서 발현이 증가한 단백질은 heat shock 27 kDa protein 1, TnT (slow skeletal muscle), TnT (fast skeletal muscle), serum albumin precursor, PGM 1, AK 1, Tpi 1였다. 이 결과는 Finishing Berkshire의 등심에서는 growing Berkshire에 비교하여 골격근육, 에너지물질대사, 세포골격 등이 보다 활성화된 것으로 사료된다.

When proteins extracted from longissimus dorsi muscles of Landrace and Berkshire at the finishing stage were compared by 2-DE, the Landrace demonstrated a quantitative increase in proteins related to slow skeletal muscle function, such as serum albumin precursor, troponin T (slow skeletal muscle; sTnT) and myoglobin. In contrast, the Berkshire exhibited comparatively elevated enzymes involved in metabolic pathways, fast skeletal muscle function, and energy production, such as heat shock 27-kDa protein (HSP27)-1, TnT (fast skeletal muscle; fTnT), muscle creatine kinase, phosphoglucomutase 1 (PGM1), triosephosphate isomerase (Tpi1) and adenylate kinase isoenzyme 1 (AK1). When compared to growing Berkshire, finishing Berkshire showed increased levels of aldehyde dehydrogenase 1 family, member L1 (ALDHL1), and muscle creatine kinase. In contrast, the growing Berkshire muscle had elevated levels of HSP27-1, sTnT, fTnT, serum albumin precursor, PGM1, AK1, and Tpi 1 as compared to the finishing Berkshire. The Landrace longissimus dorsi muscle may be composed of slower skeletal muscle, whereas Berkshire is composed of a faster skeletal muscle. The uniquely elevated quantities of proteins involved in skeletal muscle function, energy metabolism, and cytoskeleton function in the growing Berkshire indicate that these factors support growth and maintenance during the growing stage when compared with the finishing Berkshire.

키워드

참고문헌

  1. Anderson, N. L., Esquer-Blasco, R., Hofmann, J. P. and Anderson, N. G. 1991. A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies. Electrophoresis 12, 907-930. https://doi.org/10.1002/elps.1150121110
  2. Benndorf, R., Hayeb, K., Ryazantsev, S., Wieske, M., Behlke, J. and Lutsch, G. 1994. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its acting polymerization-inhibiting activity. J. Biol. Chem. 269, 20780-20784.
  3. Bouley, J., Chambon, C. and Picard, B. 2004. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4, 1811-1824. https://doi.org/10.1002/pmic.200300688
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Candek-Potokar, M., Zlender, B., Lefaucheur, L. and Bonneau, M. 1998. Effects of age and/or at slaughter on longissimusdorsimuscle: Biochemical traits and sensory quality in pigs. Meat Science 48, 287-300. https://doi.org/10.1016/S0309-1740(97)00109-5
  6. Cieslak, D., Kapelanski, W., Blicharski, T. and Pierzchala, M. 2000. Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. J. Anim. Breed. Genet. 117, 43-55. https://doi.org/10.1046/j.1439-0388.2000.00209.x
  7. Correa-Perez, J. R., Fernandez-Pelegrina, R., Zarmakoupis- Zavos, P. N. and Zavos, P. M. 2003. The effect of colloid osmotic pressure in human spermatozoa exposed to hypoosmotic conditions. Andrologia 35, 117-120. https://doi.org/10.1046/j.1439-0272.2003.00542.x
  8. Degrelle, S. A., le Blomberg, A., Garrett, W. M., Li, R. W. and Talbot N. C. 2009. Comparative proteomic and regulatory network analyses of the elongating pig conceptus. Proteomics 9, 2678-2694. https://doi.org/10.1002/pmic.200800776
  9. Dongxia, W., Kalb, S. R. and Cotter, R. J. 2004. Improved procedures for N-terminal sulfonation of peptides for matrix- assisted laser desorption/ionization post-source decay peptide sequencing. Rapid Commun. Mass Spectrom 18, 96-102. https://doi.org/10.1002/rcm.1289
  10. Du, M., Shen, Q. W. and Zhu, M. J. 2005. Role of beta-adrenoreceptor signaling and AMP-activated protein kinase in glycolysis of postmortem skeletal muscle. J. Anim. Breed. Genet. 53, 3235-3239.
  11. Gupta, M. K., Jang, J. M., Jung, J. W., Uhm, S. J., Kim, K. P. and Lee, H. T. 2009. Proteomic analysis of parthenogenetic and in vitro fertilized porcine embryos. Proteomics 9, 2846-2860. https://doi.org/10.1002/pmic.200800700
  12. Hino, M., Kurogi, K., Okubo, M. A., Murata-Hori, M. and Hosoya, H. 2000. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem. Biophys. Res. Commun. 271, 164-169. https://doi.org/10.1006/bbrc.2000.2553
  13. Hollung, K., Grove, H., Faergestad, E. M., Sidhu, M. S. and Berg, P. 2009. Comparison of muscle proteome profiles in pure breeds of Norwegian Landrace and Duroc at three different ages. Meat Sci. 81, 487-492. https://doi.org/10.1016/j.meatsci.2008.10.003
  14. Kim, J. M., Choi, B. D., Kim, B. C., Park, S. S. and Hong, K. C. 2009. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits. J. Anim. Breed. Genet. 126, 134-141. https://doi.org/10.1111/j.1439-0388.2008.00724.x
  15. Kim, N. K., Joh, J. H., Park, H. R., Kim, O. H., Park, B. Y. and Lee, C. S. 2004. Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics 4, 3422-3428. https://doi.org/10.1002/pmic.200400976
  16. Kitamura, S., Muroya, S., Nakajima, I., Chikuni, K. and Nishimura, T. 2006. Amino acid sequences of porcine fast and slow troponin T isoforms. Biosci. Biotechnol. Biochem. 70, 726-728. https://doi.org/10.1271/bbb.70.726
  17. Miron, T., Vancompernolle, K., Vandekerckhove, J., Wilchek, M. and Geiger, B. 1991. A 25-kD inhibitor of acting polymerization is a low molecular mass heat shock protein. J. Cell Biol. 114, 255-261. https://doi.org/10.1083/jcb.114.2.255
  18. Murani, E., Ponsuksili, S., Srikanchai, T., Maak, S and Wimmers, K. 2009. Expression of the porcine adrenergic receptor beta 2 gene in longissimus dorsi muscle is affected by cis-regulatory DNA variation. Anim Genet. 40, 80-89. https://doi.org/10.1111/j.1365-2052.2008.01811.x
  19. Nonogaki, K. 2000. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533-549. https://doi.org/10.1007/s001250051341
  20. Peters, T. 1995. All about albumin: biochemistry, genetics and medical applications. San Diego, Academic Press.
  21. Qvisth, V., Hagstrom-Toft, E., Enoksson, S and Bolinder, J. 2008. Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: role of adrenoreceptor subtypes. J. Clin. Endocrinol. Metab. 93, 240-246. https://doi.org/10.1210/jc.2007-1313
  22. Shevchenko, A., Wilm, M., Vorm, O and Mann, M. 1996. Mass spectrometric sequencing of proteins from silver- stained polyacrylamide gels. Anal. Chem. 68, 850-858. https://doi.org/10.1021/ac950914h
  23. Tanabe, T., Yamada, M., Noma, T., Kajii, T and Nakazawa, A. 1993. Tissue-specific and developmentally regulated expression of the genes encoding adenylate kinase isozymes. J. Biochem. 113, 200-207.
  24. Ventura-Clapier, R., Kaasik, A and Veksler, V. 2004. Structural and functional adaptations of striated muscles to CK deficiency. Mol. Cell Biochem. 256, 29-41. https://doi.org/10.1023/B:MCBI.0000009857.69730.97
  25. Warriss, P. D and Lister, D. 1982. Improvement of meat quality in pigs by beta-adrenergic blockade. Meat Sci. 7, 183-187. https://doi.org/10.1016/0309-1740(82)90084-5
  26. Yu, Z. B, Gao, F., Feng, H. Z. and Jin, J. P. 2007. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading. Am. J. Physiol. Cell Physiol. 292, 1192-1203.
  27. Zhang, Y., Proenca, R., Maffei, M., Barone, M, Leopold, L. and Friedman, J. M. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-431. https://doi.org/10.1038/372425a0