Poloxamer-407로 유도한 고지혈증 동물모델에서 Quercetin-3-O-rhamnoside 및 어성초 분획물의 항고지혈증 효과

Anti-hyperlipidemic Effect of the Isolated Component, Quercetin-3-O-rhamnoside and the Fractions from the Extract of Houttuynia Cordata in Mice

  • 김도국 (원광대학교 약학대학 한약학과 및 원광한약연구소) ;
  • 김세건 (원광대학교 약학대학 한약학과 및 원광한약연구소) ;
  • 암릿파우델 (원광대학교 약학대학 한약학과 및 원광한약연구소) ;
  • 정태숙 (한국생명공학연구소 바이오시스템연구본부 산업바이오소재연구센터) ;
  • 정현주 (원광대학교 약학대학 한약학과 및 원광한약연구소)
  • Kim, Do-Kuk (Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Kim, Se-Gun (Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Poudel, Amrit (Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Jeong, Tae-Suk (Korea Research Institute of Bioscience & Biotechnology, Biosystem Research, Industrial Bio-materials Research Center) ;
  • Jung, Hyun-Ju (Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University)
  • 투고 : 2012.05.02
  • 심사 : 2012.06.04
  • 발행 : 2012.06.30

초록

The anti-hyperlipidemic effect of Houttuynia cordata was assessed in poloxamer-407 induced hyperlipidemic mice model. The butanol fraction and its isolated compound, quercetin-3-O-rhamnoside, significantly reduced the blood triglyceride and total-cholesterol level and increased the blood HDL-cholesterol level. They also showed the significant reductive effect on the blood AST and ALT level, rising in proportion to the liver damage, in hyperlipidemic mice.

키워드

참고문헌

  1. 서운주, 류성옥 (2011) 2010년 사망원인통계 결과, 통계청.
  2. Cho S. H. (1996) Evaluation and treatment of high blood cholesterol in Korea, The Korean society of food science and nutrition, 13.
  3. Yagi K. (1987) Lipid peroxides and human diseases. Chem. Phys. Lipids. 45(2): 337-351. https://doi.org/10.1016/0009-3084(87)90071-5
  4. 최병철 (2009), 스타틴계 고지혈증치료제의 골절치료효과에 대한 분석, 약학회지, 53(4): 206-216.
  5. 문관심 (1994) 약초의 성분과 이용, 일월서각, 127.
  6. Li, W,, Zhou, P., Zhang, Y. and He, L. (2010) Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity. J Ethnopharmacol. 133(2): 922-927.
  7. Miyata, M., Koyama, T. and Yazawa, K. (2010) Water extract of Houttuynia cordata Thunb. leaves exerts anti-obesity effects by inhibiting fatty acid and glycerol absorption. J. Nutr. Sci. Vitaminol. 56(2): 150-156. https://doi.org/10.3177/jnsv.56.150
  8. Lai, K. C., Chiu, Y. J., Tang, Y. J., Lin, K. L., Chiang, J. H., Jiang, Y. L., Jen, H. F., Kuo, Y. H., Agamaya, S., Chung, J. G. and Yang, J. S. (2010) Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells. Anticancer Res. 30(9): 3549-3556.
  9. Chiang, L. C., Chang, J. S., Chen, C. C., Ng, L. T. and Lin, C. C. (2003) Anti-Herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. Am. J. Chin. Med. 31(3): 355-62. https://doi.org/10.1142/S0192415X03001090
  10. Lee, J. S., Kim, I. S., Kim, J. H., Kim, J. S., Kim, D. H. and Yun, C. Y. Suppressive effects of Houttuynia cordata Thunb (Saururaceae) extract on Th2 immune response. J. Ethnopharmacol. 117(1): 34-40. https://doi.org/10.1016/j.jep.2008.01.013
  11. Lu, H., Wu, X., Liang, Y. and Zhang, J. (2006) Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia Thunb. Chem. Pharm. Bull. 54(7): 936-940. https://doi.org/10.1248/cpb.54.936
  12. Meng, J., Dong, X. P., Jiang, Z. H., Leung, S. Y. and Zhao, Z. Z. (2006) Study on chemical constituents of flavonoids in fresh herb of Houttuynia cordata. Zhongguo Zhong Yao Za Zhi 31(16): 1335-1337.
  13. Kim, S. K., Ryu, S. Y., No, J., Choi, S. U. and Kim, Y. S. (2001) Cytotoxic alkaloids from Houttuynia cordata. Arch. Pharm. Res. 24(6): 518-521. https://doi.org/10.1007/BF02975156
  14. Hanamura, T., Hagiwara, T. and Kawagishi, H. (2005) Structural and functional characterization of polyphenols isolated from acerola fruit. Biosci. Biotechnol. Biochem. 69(2): 280-286. https://doi.org/10.1271/bbb.69.280
  15. Materska, M. (2008) Quercetin and its derivatives: chemical Structure and bioactivity Pol. J. Food Nutr. Sci. 58(4): 407-413.
  16. Plazonic, A., Bucar, F., Males, Z., Mornar, A., Nigovic, B. and Kujundzic, N. (2009) Identification and quantification of flavonoids and phenolic acids in burr parsley, usin high-performance liquid chromatography with diode Array detection and electrospray ionization mass spectrometry. Molecules 14(7): 2466-2490 https://doi.org/10.3390/molecules14072466
  17. Wout, A. G., Pec, E. A., Maggiore, J. A., Williams, R. H. and Johnston, T. P. (1992) Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. J. Parenteral Sci. Technol. 46(6): 192-200.
  18. McGowan, M. W., Artiss, J. D. and Strandbergh, D. R. (1983) A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin. Chem. 29: 538-542.
  19. Richard, W. (1976) Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous flow anlysis. Clin. Chem. 22: 1579-1588.
  20. Noma, A., Nezu-Nakayama, K., Kita, M. and Okabe, H. (1978) Clin. Chem. 24: 1504-1508.
  21. Reitman, S. and Frankel, S. (1957) A colorimetric method to determine serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 29: 56-62.
  22. Brecher, P. and Chan, C. T. (1980) Properties of AcylcoA: cholesterol O-acyltransferase in aortic microsomes from atherosclerotic rabbits. BBA-Lipid Lipid Met. 617: 458-471. https://doi.org/10.1016/0005-2760(80)90012-0
  23. Lee, C. H., Jeong, T. S., Choi, Y. K., Hyun, B. W., Oh, G. T., Kim, E. H., Kim, J. R., Han, J. I. and Bok, S. H. (2001) Antiatherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun. 284: 681-688. https://doi.org/10.1006/bbrc.2001.5001
  24. Cho, K. H., An, S., Lee, W. S., Paik, Y. K., Kim, Y. K. and Jeong, T. S. (2003) Mass-production of human ACAT-1 and ACAT-2 to screen isoform-specific inhibitor: a different substrate specificity and inhibitory regulation. Biochem. Biophys. Res. Commun. 309: 864-872. https://doi.org/10.1016/j.bbrc.2003.08.077