Evaluation of ${\mu}$-Calpain Inhibitory Activity of Korean Indigenous Marine Organism Extracts

  • Received : 2012.04.16
  • Accepted : 2012.05.08
  • Published : 2012.06.30

Abstract

Marine organism extracts were prepared from 26 species of Korean indigenous marine organisms, including 25 species belonging in class Anthozoa of phylum Cnidaria and a species belonging to subphylum Urochordata of phylum Chordata, and screened their inhibitory effects against ${\mu}$-calpain. As a result, the thirteen extracts were found to be active in the criteria of $IC_{50}$ < 100 ${\mu}g/ml$. Among them, the MeOH extracts of Plexauroides praelonga and Alveopora japonica showed remarkable ${\mu}$-calpain inhibitory activity with $IC_{50}$ values of $4.62{\pm}0.22$ and $4.82{\pm}0.07{\mu}g/ml$, respectively. In addition, chemical investigation of A. japonica led to the isolation of an active compound, hexadecyl tetradecanoate, as a selective cathepsin B inhibitor ($IC_{50}=9.05{\pm}2.45{\mu}M$). This compound was isolated as constituent of A. japonica for the first time in the present study.

Keywords

References

  1. Abell, A.D., Jones, M.A., Neffe, A.T., Aitken, S.G., Cain, T.P., Payne, R.J., McNabb, S.B., Coxon, J.M., Stuart, B.G., Pearson, D., Lee, H.Y.Y., and Morton, J.D., Investigation into the P3 binding domain of m-Calpain using photoswitchable diazo- and triazene-dipeptide aldehydes: new anticataract agents. J. Med. Chem. 50, 2916-2920 (2007). https://doi.org/10.1021/jm061455n
  2. Boland, B. and Campbell, V., A ${\beta}-mediated$ activation of the apoptotic cascade in cultured cortical neurones: a role for cathepsin-L. Neurobiol. Aging 25, 83-91 (2004). https://doi.org/10.1016/S0197-4580(03)00034-4
  3. Carragher, N.O., Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr. Pharm. Des. 12, 615-638 (2006). https://doi.org/10.2174/138161206775474314
  4. Cuerrier, D., Moldoveanu, T., Campbell, R.L., Kelly, J., Yoruk, B., Verhelst, S.H., Greenbaum, D., Bogyo, M., and Davies, P. L., Development of calpain-specific inactivators by screening of positional scanning epoxide libraries. J. Biol. Chem. 282, 9600-9611 (2007). https://doi.org/10.1074/jbc.M610372200
  5. Donkor, I.O., Assefa, H., and Liu, J., Structural basis for the potent calpain inhibitory activity of peptidyl ${\alpha}-ketoacids$. J. Med. Chem. 51, 4346-4350 (2008). https://doi.org/10.1021/jm800182c
  6. Han, A.-R., Song, J.-I., Jang, D.S., Min, H.-Y., Lee, S.K., and Seo, E.-K., Cytotoxic constituents of the octocoral Dendronephthya gigantean. Arch. Pharm. Res. 28, 290-293 (2005). https://doi.org/10.1007/BF02977794
  7. Ieda, N., Mantri, K., Miyata, Y., Ozaki, A., Komura, K., and Sugi, Y., Esterification of long-chain acids and alcohols catalyzed by ferric chloride hexahydrate. Ind. Eng. Chem. Res. 47, 8631-8638 (2008). https://doi.org/10.1021/ie800957b
  8. Kang, D.-H, Jun, K.-Y., Lee, J.P., Pak, C.S., Na, Y.h., and Kwon, Y., Identification of 3-acetyl-2-aminoquinolin-4-one as a novel, nonpeptidic scaffold for specific calpain inhibitory activity. J. Med. Chem. 52, 3093-3097 (2009). https://doi.org/10.1021/jm8014734
  9. Kim, I.K., Park, S.K., Park, S.H., and Jhang, S.K., Lipids Constituents of the Korean marine sponges. J. Korean Chem. Soc. 35, 85-89 (1991).
  10. Lee, E.Y., Jang, I.H., Shin, M.J., Cho, H.J., Kim, J.S., Eom, J.E., Kwon, Y., and Na, Y.H., Chalcones as novel non-peptidic ${\mu}-calpain$ inhibitors. Bull. Korean Chem. Soc. 32, 3459-3464 (2011). https://doi.org/10.5012/bkcs.2011.32.9.3459
  11. Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E.D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L., and Gan, L., Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703-714 (2006). https://doi.org/10.1016/j.neuron.2006.07.027
  12. Perrin, B.J. and Huttenlocher, A., Calpain. Int. J. Biochem. Cell. Biol. 34, 722-725 (2002). https://doi.org/10.1016/S1357-2725(02)00009-2
  13. Pietsch, M., Chua, K.C.H., and Abell, A.D., Attractive targets for the development of synthetic inhibitors. Curr. Top. Med. Chem. 10, 270-293 (2010). https://doi.org/10.2174/156802610790725489
  14. Reverter, D., Sorimachi, H., and Bode, W., The structure of calcium-free human m-calpain. implications for calcium activation and function. Trends Cardiovasc. Med. 11, 222-229 (2001). https://doi.org/10.1016/S1050-1738(01)00112-8
  15. Youn, U.J., Lee, Y.J., Jeon, H.R., Shin, H.J., Son, Y.M., Nam, J.-W., Han, A.-R., Song, J.-I., Won, Y.-J., and Seo, E.-K., Chemical constituents from the stony coral alveopora japonica. Nat. Prod. Sci. 17, 1-4 (2011).
  16. Zhang, Y., Jung, S.Y., Jin, C.B., Kim, N.D., Gong, P., and Lee, Y.S., Design and synthesis of 4-aryl-4-oxobutanoic acid amides as calpain inhibitors. Bioorg. Med. Chem. Lett. 19, 502-507 (2009). https://doi.org/10.1016/j.bmcl.2008.11.030