DOI QR코드

DOI QR Code

NUMERICAL SOLUTION OF A CLASS OF TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

  • Tari, Abolfazl (Department of mathematics, Shahed University) ;
  • Shahmorad, Sedaghat (Department of Applied Mathematics, Faculty of mathematical sciences, University of Tabriz)
  • Received : 2011.02.27
  • Accepted : 2011.11.16
  • Published : 2012.05.30

Abstract

In this work, we investigate solving two-dimensional nonlinear Volterra integral equations of the first kind (2DNVIEF). Here we convert 2DNVIEF to the two-dimensional linear Volterra integral equations of the first kind (2DLVIEF) and then we solve it by using operational approach of the Tau method. But for solving the 2DLVIEF we convert it to an equivalent equation of the second kind and then by giving some theorems we formulate the operational Tau method with standard base for solving the equation of the second kind. Finally, some numerical examples are given to clarify the efficiency and accuracy of presented method.

Keywords

References

  1. G. Vainikko, Multidimensional weakly singular integral equations, Lecture notes in mathematics, Berlin,Springer, 1993.
  2. A. J. Jerri, Introduction to integral equations with applications, John Wiley and Sons, INC, 1999.
  3. S. Mckee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra integral equations of the first kind, IMA J Numer. Anal. 20 (2000), 423-440. https://doi.org/10.1093/imanum/20.3.423
  4. B. A. Bel'tyukov and L. N. Kuznechichina, A Runge-Kutta method for the solution of two-dimensional nonlinear Volterra integral equations, Diff. Eq. 12 (1976), 1169-1173.
  5. K. Maleknejad, S. Sohrabi and B. Baranji, Application of 2D-BPFs to nonlinear integral equations, Commun Nonlinear Sci Numer Simulat, 15 (2010), 527-535. https://doi.org/10.1016/j.cnsns.2009.04.011
  6. E. L. Ortiz, The Tau method, SIAM J. Numer. Anal. (1969), 480-492.
  7. E. L. Ortiz and L. Samara, An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing, 27 (1981), 15-25. https://doi.org/10.1007/BF02243435
  8. M. Hosseini Aliabadi and E. L. Ortiz, Numerical solution of feedback control systems equations, Appl. Math. Lett. 1(1) (1988), 3-6. https://doi.org/10.1016/0893-9659(88)90163-2
  9. M. Hosseini Aliabadi and E. L. Ortiz, Numerical treatment of moving and free boundary value problems with the Tau method, Comput. Math. Appl. 35(8) (1999), 197-210.
  10. K. M. Liu and C. K. Pan, The automatic solution system of ordinary differential equations by the Tau method, Comput. Math. Appl. 38 (1999), 197-210.
  11. M. Hosseini Aliabadi, The Buchstab's function and the operational Tau method, Korean J. Comput. Appl. Math. 7(3) (2000), 673-683.
  12. M. Hosseini Aliabadi, The application of the operational Tau method on some stiff system of ODEs, Int. J. Appl. Math. 2(9) (2000), 1027-1036.
  13. M. Hosseini Aliabadi, Solving ODE BVPs using the perturbation term of the Tau method over semi-infinite intervals, Far East J. Appl. Math. 4(3) (2000), 295-303.
  14. E. L. Ortiz and L. Samara, Numerical solution of partial differential equations with variable coefficient with an operational approach to the Tau method, Comput. Math. Appl. 10(1) (1984), 5-13. https://doi.org/10.1016/0898-1221(84)90081-6
  15. K. M. Liu and E. L. Ortiz, Numerical solution of ordinary and partial functionaldifferential eigenvalue problems with the Tau method, Computing(wien) 41 (1989), 205-217.
  16. E. L. Ortiz and K. S. Pun, Numerical solution of nonlinear partial differential equations with the Tau method, J. Comput. and Appl. Math. 12(13) (1985) 511-516.
  17. M. Hosseini Aliabdi and S. Shahmorad, A matrix formulation of the Tau method for Fredholm and Volterra linear integro-differential differential equations, The Korean jornal of Comput. and Appl. Math. 9(2) (2002), 497-507.
  18. S. M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Appl. Math. Modeling 27 (2003), 145-154. https://doi.org/10.1016/S0307-904X(02)00099-9
  19. S. M. Hosseini and S. Shahmorad, Numerical piecewise approximation of Fredholm integrodifferential equations by the Tau method, Appl. Math. Modeling 29 (2005), 1005-1021. https://doi.org/10.1016/j.apm.2005.02.003
  20. J. pour-Mahmoud, M. Y. Rahimi and S. Shahmorad, Numerical solution of the system of Fredholm integro-differentail equations by the Tau method, Appl. Math. Comput. 168 (2005), 465-478.
  21. J. pour-Mahmoud, M. Y. Rahimi and S. Shahmorad, Numerical solution of Volterra integro-differentail equations by the Tau method with the Chebyshef and Legendre bases, Appl. Math. Comput. 170 (2005), 314-338.
  22. F. Ghoreishi and M. Hadizadeh, Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations, Numer. Algor. 52 (2009), 541-559. https://doi.org/10.1007/s11075-009-9297-9
  23. M. Y. Rahimi, S. Shahmorad, F. Talati and A. Tari, An operational method for the numerical solution of two dimensional linear Fredholm integral equations with an error estimation, Bulletin of Iranian Mathematical Society 36(2) (2010), 119-132.
  24. E. Babolian and Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, J. Comput. and Appli. Math. 220 (2008), 51-57. https://doi.org/10.1016/j.cam.2007.07.029
  25. A. Tari, M. Y. Rahimi, S. Shahmorad and F. Talati, Development of the Tau method for the numerical solution of two-dimentional linear Volterra integro-differential equations, J. of Computationa Methods in Applied Mathematics 9(4) 2009, 421-435.