References
- G. Vainikko, Multidimensional weakly singular integral equations, Lecture notes in mathematics, Berlin,Springer, 1993.
- A. J. Jerri, Introduction to integral equations with applications, John Wiley and Sons, INC, 1999.
- S. Mckee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra integral equations of the first kind, IMA J Numer. Anal. 20 (2000), 423-440. https://doi.org/10.1093/imanum/20.3.423
- B. A. Bel'tyukov and L. N. Kuznechichina, A Runge-Kutta method for the solution of two-dimensional nonlinear Volterra integral equations, Diff. Eq. 12 (1976), 1169-1173.
- K. Maleknejad, S. Sohrabi and B. Baranji, Application of 2D-BPFs to nonlinear integral equations, Commun Nonlinear Sci Numer Simulat, 15 (2010), 527-535. https://doi.org/10.1016/j.cnsns.2009.04.011
- E. L. Ortiz, The Tau method, SIAM J. Numer. Anal. (1969), 480-492.
- E. L. Ortiz and L. Samara, An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing, 27 (1981), 15-25. https://doi.org/10.1007/BF02243435
- M. Hosseini Aliabadi and E. L. Ortiz, Numerical solution of feedback control systems equations, Appl. Math. Lett. 1(1) (1988), 3-6. https://doi.org/10.1016/0893-9659(88)90163-2
- M. Hosseini Aliabadi and E. L. Ortiz, Numerical treatment of moving and free boundary value problems with the Tau method, Comput. Math. Appl. 35(8) (1999), 197-210.
- K. M. Liu and C. K. Pan, The automatic solution system of ordinary differential equations by the Tau method, Comput. Math. Appl. 38 (1999), 197-210.
- M. Hosseini Aliabadi, The Buchstab's function and the operational Tau method, Korean J. Comput. Appl. Math. 7(3) (2000), 673-683.
- M. Hosseini Aliabadi, The application of the operational Tau method on some stiff system of ODEs, Int. J. Appl. Math. 2(9) (2000), 1027-1036.
- M. Hosseini Aliabadi, Solving ODE BVPs using the perturbation term of the Tau method over semi-infinite intervals, Far East J. Appl. Math. 4(3) (2000), 295-303.
- E. L. Ortiz and L. Samara, Numerical solution of partial differential equations with variable coefficient with an operational approach to the Tau method, Comput. Math. Appl. 10(1) (1984), 5-13. https://doi.org/10.1016/0898-1221(84)90081-6
- K. M. Liu and E. L. Ortiz, Numerical solution of ordinary and partial functionaldifferential eigenvalue problems with the Tau method, Computing(wien) 41 (1989), 205-217.
- E. L. Ortiz and K. S. Pun, Numerical solution of nonlinear partial differential equations with the Tau method, J. Comput. and Appl. Math. 12(13) (1985) 511-516.
- M. Hosseini Aliabdi and S. Shahmorad, A matrix formulation of the Tau method for Fredholm and Volterra linear integro-differential differential equations, The Korean jornal of Comput. and Appl. Math. 9(2) (2002), 497-507.
- S. M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Appl. Math. Modeling 27 (2003), 145-154. https://doi.org/10.1016/S0307-904X(02)00099-9
- S. M. Hosseini and S. Shahmorad, Numerical piecewise approximation of Fredholm integrodifferential equations by the Tau method, Appl. Math. Modeling 29 (2005), 1005-1021. https://doi.org/10.1016/j.apm.2005.02.003
- J. pour-Mahmoud, M. Y. Rahimi and S. Shahmorad, Numerical solution of the system of Fredholm integro-differentail equations by the Tau method, Appl. Math. Comput. 168 (2005), 465-478.
- J. pour-Mahmoud, M. Y. Rahimi and S. Shahmorad, Numerical solution of Volterra integro-differentail equations by the Tau method with the Chebyshef and Legendre bases, Appl. Math. Comput. 170 (2005), 314-338.
- F. Ghoreishi and M. Hadizadeh, Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations, Numer. Algor. 52 (2009), 541-559. https://doi.org/10.1007/s11075-009-9297-9
- M. Y. Rahimi, S. Shahmorad, F. Talati and A. Tari, An operational method for the numerical solution of two dimensional linear Fredholm integral equations with an error estimation, Bulletin of Iranian Mathematical Society 36(2) (2010), 119-132.
- E. Babolian and Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, J. Comput. and Appli. Math. 220 (2008), 51-57. https://doi.org/10.1016/j.cam.2007.07.029
- A. Tari, M. Y. Rahimi, S. Shahmorad and F. Talati, Development of the Tau method for the numerical solution of two-dimentional linear Volterra integro-differential equations, J. of Computationa Methods in Applied Mathematics 9(4) 2009, 421-435.