Acknowledgement
Supported by : Sungshin Women's University
References
- T. Arai, Good deal bounds induced by shortfall risk, preprint (2009).
- P. Artzner, F. Delbaen, J.-M, Eber and D. Heath, Thinking coherently, RISK 10, November(1997), 68-71.
- P. Artzner, F. Delbaen, J.-M, Eber and D. Heath, Coherent measures of risk, Mathematical Finance 9 (1999), 203-223. https://doi.org/10.1111/1467-9965.00068
- F. Bellini, M. Fritteli, On the existence of minimax martingale measures, Mathematical Finance 12 (1999), 1-21.
- F. Biagini, M. Fritteli, Utility maximization in incomplete markets for unbounded processes, Finance and Stochastics 9 (1999), 493-517.
- F. Biagini, M. Fritteli, A unified framework for utility maximization problems: An Orlicz space approach, Annals of Applied Probability 18 (1999), 929-966.
- J. Borwein, Q. Zhu, Variational Methods in Convex Analysis, Journal of Global Optimization 35 (2006), 197-213. https://doi.org/10.1007/s10898-005-3835-3
- P. Cheridito and T. Li, Risk measures on Orlicz hearts, Mathematical Finance 19 (2009), 189-214. https://doi.org/10.1111/j.1467-9965.2009.00364.x
- F. Delbaen, Coherent risk measures on general probability spaces, Advances in finance and stochastics: Essays in honor of Dieter Sondermann (2002), Springer, 1-37.
- F. Delbaen and W. Schachermayer, A General version of the fundamental theorem of asset pricing, Mathematische Annalen 300 (1994), 463-520. https://doi.org/10.1007/BF01450498
- F. Delbaen and W. Schachermayer, The fundamental theorem of asset pricing for unbounded stochastic processes, Mathematische Annalen 312 (1994), 215-250.
- I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland Publishing Company, Amsterdam, 1976.
- H. Follmer and P. Leukert, Quantile hedging, Finance and Stochastics 10 (1999), 163-181.
- H. Follmer and P. Leukert, Efficient hedging: Cost versus shortfall risk, Finance and Stochastics 4 (2000), 117-146. https://doi.org/10.1007/s007800050008
- H. Follmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, Springer-Verlag, New York, 2002.
- I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991.
- N. El Karoui and M. C. Quenez, Dynamic programming and pricing of contingent claims in an incomplete market, SIAM J. Control and Optimization 33 (1995), 29-66. https://doi.org/10.1137/S0363012992232579
- D. O. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in an incomplete security market, Probability Theory and Related Fields 105 (1996), 459-479. https://doi.org/10.1007/BF01191909
- Y. Nakano, Efficient hedging with coherent risk measures, Journal of Mathematical Analysis and Applications 293 (2004), 345-354. https://doi.org/10.1016/j.jmaa.2004.01.010
- W. Rudin, Real and Complex Analysis, McGraw-Hill Inc., New York, 1974.
- B. Rudloff, Convex hedging in incomplete markets, Applied Mathematical Finance 14 (2007), 437-452. https://doi.org/10.1080/13504860701352206
- B. Rudloff, Coherent hedging in incomplete markets, Quantitative Finance 9 (2009), 197-206 https://doi.org/10.1080/14697680802169787
- A. Schied, On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals, The Annals of Applied Probability 14 (2004), 1398-1423. https://doi.org/10.1214/105051604000000341
- K. Yosida, Functional Analysis, Springer, New York, 1980.