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COHERENT AND CONVEX HEDGING ON ORLICZ HEARTS

IN INCOMPLETE MARKETS†

JU HONG KIM

Abstract. Every contingent claim is unable to be replicated in the in-
complete markets. Shortfall risk is considered with some risk exposure.

We show how the dynamic optimization problem with the capital con-
straint can be reduced to the problem to find an optimal modified claim

ψ̃H where ψ̃ is a randomized test in the static problem. Convex and co-
herent risk measures defined in the Orlicz hearts spaces, MΦ, are used as

risk measure. It can be shown that we have the same results as in [21, 22]
even though convex and coherent risk measures defined in the Orlicz hearts
spaces, MΦ, are used. In this paper, we use Fenchel duality Theorem in

the literature to deduce necessary and sufficient optimality conditions for
the static optimization problem using convex duality methods.
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1. Introduction

It is not possible to replicate every contingent claim in incomplete markets,
in which the equivalent martingale measures are not unique. There is a dy-
namic self-financing hedging strategy with arbitrage-free hedging price to super-
replicate a contingent claim in complete or incomplete markets. The super-
hedging price is the minimal initial capital that an agent or an investor has to
invest to find a strategy which dominates the claim payoff with certainty [17].
The super-hedging price of a contingent claim is given by the supremum of the
expected values over all equivalent martingale measures.

With the super-hedging price, an agent or an investor could eliminate the
shortfall risk completely by choosing a suitable hedging strategy. The prices
derived by super-replication are too high and not acceptable in practice. An
agent or an investor, who sell a contingent claim, want to get rid of the associated
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shortfall risk by means of a dynamic hedging strategy. The shortfall risk is the
difference between the payoff of the contingent claim and the value of the agent’s
or the investor’s hedging strategy at maturity.

With the initial capital less than the super-hedging price, i.e., under the
capital constraint an agent or an investor is unable to eliminate all exposed
risk associated to the contingent claim completely and so wants to find optimal
strategies which minimize the shortfall risk. They are seeking optimal partial
hedging strategies with the initial capital less than the super-hedging price by
taking some risks.

Usually the dynamic optimization problem which minimizes the shortfall risk
can be split into a static optimization problem. The first one is to find an optimal
modified claim ψ̃H where ψ̃ is the solution of the static problem and then to
find a superhedging strategy for the modified claim ψ̃H.

Föllmer and Leukert [13] constructed a quantile hedging strategy which max-
imizes the probability of a successful hedge under the objective measure P under
the capital constraint. In the quantile hedging approach, the size of the shortfall
is not taken into account but only the probability of its occurrence. Föllmer
and Leukert [14] also introduced optimal hedging strategies which minimize the
shortfall risk under the capital constraint by using the expected loss functions
as risk measures. In [14], the risk measure ρ is the form of ρ(X) = EP [ℓ(X+)],
where X is a random variable on (Ω,F), P is a fixed probability measure on Ω,
and ℓ : R → R is a strictly convex function. Nakano [19] uses coherent risk mea-
sures as risk measures in the L1(Ω,F ,P) random variable spaces instead of the
loss function. Notice that the L1 space is between L∞(Ω,F ,P) and L0(Ω,F ,P).
Arai [1] obtained robust representation results of shortfall risk measures on Or-
licz hearts under the continuous time setting. The Orlicz hearts setting allows
us to treat various loss functions and various claims in a unified framework. Co-
herent risk measure is introduced by Artzner et al. [2, 3] as risk measures, and
is extended to general probability spaces by Delbaen [9].

Rudloff [21, 22] uses Fenchel duality to show the existence of the static solution
with coherent and convex risk measures defined on L1. He finds a necessary and
sufficient condition for an optimal randomized test ψ, and its randomized test
has the typical 0-1-structure. Coherent and convex risk measures using as risk
measures are defined L∞ or L1 [15], and is represented as a dual form which
is the supremum of expectation of acceptable position with respect to different
probability spaces.

Cheridito and Li [8] studied risk measures on bigger sets than L∞, Orlicz
hearts. They proved that coherent and convex risk measures on an Orlicz hearts,
which is real-valued on a set with non-empty algebraic interior, is real-valued on
the whole space and has a robust representation as maximal penalized expec-
tation with respect to different probability spaces. This includes coherent and
convex risk measures on Lp-spaces for 1 ≤ p < ∞ and covers a wide range of
interesting examples. Also Orlicz hearts have nice dual properties.
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In this paper, we use coherent and convex risk measures defined Orlicz hearts
in the static optimization problem and get the same results as in Rudloff [21, 22].
We provide modified proofs suitable for Orlicz spaces.

This paper is constructed as follows. Mathematical settings are given in
Section 2. The definition and several properties of Orlicz hearts are given in
Section 3. The primal and dual problem of the static optimization problem is
derived and strong duality holds in Section 4.

2. Mathematical settings

Let (Ω,F , (Ft)0≤t≤T ,P) be a complete filtered probability space. An Rn-
valued semimartingale S = (St)t∈[0,T ] is called a sigmamartingale if there exists

an R-valued martingale M and an M -integrable predictable R+-valued process

ξ such that St =
∫ t
0
ξudMu, t ∈ [0, T ]. It is assumed that the riskless interest

rate is zero for simplicity.
Let Pσ denote the set of probability measures Q equivalent to P such that

S is a sigmamartingale with respect to Q. Assume that Pσ ̸= ∅ to exclude
arbitrage opportunities. Pσ ̸= ∅ holds if and only if S satisfies the condition of
’no free lunch with vanishing risk’. If the probability space Ω is finite, then the
condition ’no free lunch with vanishing risk’ can be replaced by the more strong
condition ’no arbitrage’, and the set Pσ by the set of equivalent martingale
measures M [10, 11].

Definition 2.1. A self-financing strategy with initial capital x ≥ 0 is defined
as a predictable process (x, ξt) such that the value process (value of the current
holdings)

Xt = x+

∫ t

0

ξudSu, t ∈ [0, T ]

is P -a.s. well-defined.

Definition 2.2. A self-financing strategy (x, ξt) is called admissible if there
exists some constant c > 0 such that

∀t ∈ [0, T ] x+

∫ t

0

ξudSu ≥ −c P − a.s..

Consider a contingent claim whose payoff is given by a FT -measurable, non-
negative random variable H. The superhedging price U0 is given by the dual
characterization

U0 = sup
Q∈Pσ

EQ[H] < +∞.

With the superhedging price U0, a contingent claim H can be perfectly hedged
but the superhedging strategy is too expensive to be used in practice. When
the agent or the investor is unwilling to invest the superhedge price in a hedging
strategy, they seek the best strategy the agent or an investor can achieve with
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a smaller amount x0 < U0. They look for an admissible strategy (x̃, ξt) with
initial endowment x̃ ≤ x0 that minimizes the coherent or convex shortfall risk

ρ(−(H −XT )
+). (2.1)

To construct the optimal hedging strategy, firstly we solve the static problem
of minimizing

ρ(−(H − Y )+)

among all FT -measurable random variables Y ≥ 0 satisfying the constraints

sup
Q∈Pσ

EQ[Y ] ≤ x̃.

If Y ∗ is a solution in the static problem then so is Ỹ := H∧Y ∗, since 0 ≤ Ỹ ≤ H,
EQ[Ỹ ] ≤ x̃ and (H − Ỹ )+ = (H −H ∧ Y ∗)+ = (H − Y ∗)+. So we may assume
that 0 ≤ Y ∗ ≤ H, or equivalently, that Y ∗ = Hψ∗ for ψ∗ ∈ R0,
where R0 is defined as

R0 :=
{
ψ ∈ R

∣∣∣ ψ : Ω → [0, 1], ψ is FT −measurable, sup
Q∈M

EQ[ψH] ≤ x̃
}
.

The dynamic optimal problem (2.1) with x̃ ≤ x0 can be expressed as the static
problem

min
ψ∈R0

ρ((ψ − 1)H). (2.2)

The first one is to find an optimal modified claim ψ̃H where ψ̃ is the solution
of the static problem

min
ψ∈R0

ρ((ψ − 1)H) = ρ((ψ̃ − 1)H). (2.3)

The second one is to find a superhedging strategy for the modified claim ψ̃H.

Theorem 2.1 ([19]). Let ψ̃ be a solution to the minimization problem (2.3) and

let (x̃0, ξ̃) be the admissible strategy determined by the optional decomposition of

the claim ψ̃H. Then the strategy (x̃0, ξ̃) is the optimal solution of the problem
(2.1) with the constraint x̃ ≤ x0.

3. Robust representation of risk measure ρ on Orlicz hearts

We consider the shortfall risk assuming that the risk measure ρ is (−∞,∞]-
valued coherent or convex risk measures on maximal subspaces of Orlicz classes.
L0 denotes the space of all R-valued random variables on (Ω,F).

Definition 3.1. Let X be a linear subspace of L0 that contains all constants.
A monetary risk measure ρ : X → R ∪ {∞} is a mapping satisfying for all X,
Y ∈ X

(1) ρ(0) ∈ R (Finiteness),
(2) ρ(X) ≥ ρ(Y ) if X ≤ Y (Monotonicity) ,
(3) ρ(X +m) = ρ(X)−m for all m ∈ R (Cash invariance).
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A monetary risk measure is called convex if it satisfies

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all λ ∈ [0, 1] (Convexity).

A convex monetary risk measure is called coherent if it satisfies

ρ(λX) = λρ(X) for all λ ≥ 0 (Positive homogeneity).

When ρ(X) is positive, the number ρ(X) can be thought of as the minimum
extra cash the agent has to add to the risky position X, and invest in the
reference instrument, to be allowed to proceed with his/her plans. When ρ(X)
is negative, the amount of cash −ρ(X) can be withdrawn from the position or it
can be received as restitution, as in the case of organized markets for financial
futures [2].

Under the assumption of the positive homogeneity, the convexity is equivalent
to

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (Subadditivity),

which means the downside risk of a position is reduced if the payoff profile is
increased.

Definition 3.2. Let X be a linear subspace of L0 that contains all constants.
The acceptance set of a monetary risk measure ρ : X → R ∪ {∞} is given by

Aρ := {X ∈ X : ρ(X) ≤ 0}.

Let X be a Banach lattices and f : X → R ∪ {+∞}. We denote

dom f := {x ∈ X : f(x) ∈ R}.
A subset U of X is an algebraic neighborhood of x ∈ X if for every y ∈ X , there
exists an ϵ > 0 such that

x+ ty ∈ U for all 0 ≤ t ≤ ϵ.

The algebraic interior of a subset A of X , denoted by core(A), consists of all
x ∈ A that have an algebraic neighborhood in A.

A convex function f from a topological vector space X to R ∪ {±∞} is said
to be proper if f(x) < ∞ for at least one x ∈ X and f(x) > −∞ for all x ∈ X .
We call it subdifferentiable at x ∈ X if x ∈ R and there exists an element x∗ in
the topological dual X ∗ of X such that x∗(y) ≤ f(x + y) − f(x) for all y ∈ X .
For every proper convex function f , the conjugate

f∗(x∗) := sup
x∈X

{x∗(x)− f(x)}

is a σ(X ∗,X )-lower semicontinuous, convex function from X ∗ to R ∪ {+∞}. If
f is subdifferentiable at x ∈ X , then

f(x) = max
x∗∈X∗

{x∗(x)− f∗(x∗)}.

We call a function Φ : [0,∞) → [0,∞) a Young function if it is left-continuous,
convex, limx↓0 Φ(x) = Φ(0) = 0, and limx→∞ Φ(x) = ∞. It follows from these
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properties that Φ is increasing and continuous except possibly at a single point,
where it jumps to ∞. So the condition of left-continuity is needed at that one
point. The conjugate(or polar) function Ψ of Φ is defined as

Ψ(y) := sup
x≥0

{xy − Φ(x)}, y ≥ 0.

The function Ψ is a Young function and its conjugate function is Φ. The Orlicz
hearts corresponding to Φ defined as

MΦ :=
{
X ∈ L0 : EP [Φ(c|X|)] <∞ for all c > 0

}
.

The Orlicz space for Φ is defined as

LΦ :=
{
X ∈ L0 : EP [Φ(c|X|)] <∞ for some c > 0

}
.

The Luxemburg norm and the Orlicz norm are respectively defined as

∥X∥Φ := inf {c > 0 : E[(|X/c|)] ≤ 1}

and

∥X∥∗Ψ := sup{EP [XY ] : ∥Y ∥Ψ ≤ 1}.

The above two norms are equivalent on LΦ.
If Φ jumps to ∞, then MΦ is equal to the trivial space {0}. In this paper, it

assumed that Φ is real-valued. So Φ is continuous function.

Theorem 3.1. Suppose that Φ is finite. Then MΦ is the ∥ · ∥Φ-closure of L∞

and the Banach dual of MΦ with the Luxemburg norm is LΨ with the Orlicz
norm, i.e. (MΦ)∗ = LΨ.

The following examples show the several Orlicz spaces and the relations among
MΦ, LΨ, L∞, Lp and L1 depending on the choice of the Young function Φ.

Example 3.2 ([8]). If Φ(x) = x, then we have

Ψ(y) =

{
0, for y ≤ 1
∞, for y > 1,

and

MΦ = LΦ = L1, ∥ · ∥Φ = ∥ · ∥1, LΨ = L∞, ∥ · ∥∗Φ = ∥ · ∥∞.

If Φ(x) = xp for p ∈ (1,∞), then Ψ(y) = p1−qq−1yq, and we have

MΦ = LΦ = Lp, ∥ · ∥Φ = ∥ · ∥p, LΨ = Lq, ∥ · ∥∗Φ = ∥ · ∥q.

If Φ(x) = exp(λx)− 1 for λ > 0, then we have

Ψ(y) =

{
0, for y ≤ λ

(y/λ) ln(y/λ)− y/λ+ 1, for y > λ,

and we have

L∞ ⊂MΦ ⊂ Lp ⊂ LΨ ⊂ L1 for all p ∈ (1,∞).



Coherent and Convex Hedging on Orlicz Hearts 419

We identify a probability measure Q on (Ω,F) that is absolutely continuous
with respect to P with the Radon-Nikodym derivative φ = dQ/dP ∈ L1. The
set

D := {φ ∈ L1 : φ ≥ 0, EP [φ] = 1}

represents all probability measures on (Ω,F) that is absolutely continuous with
respect to P . Let DΨ be denoted by the intersection

DΨ = D ∩ LΨ.

A mapping γ : DΨ → (−∞,∞] is called a penalty function on DΨ if it is
bounded from below and γ ̸≡ ∞.

Definition 3.3. It is called that γ satisfies the growth condition (G) if there
exist constants a ∈ R and b > 0 such that

γ(Q) ≥ a+ b∥Q∥∗Φ for all Q ∈ DΨ.

For a penalty function γ on DΨ, define ργ as

ργ(X) := sup
Q∈DΨ

{EQ[−X]− γ(Q)} X ∈MΦ,

which is called a robust representation of ργ .
ργ defines a lower semicontinuous convex risk measure on MΦ with values

in (−∞,∞). The bilinear form < Y,X > between LΨ and MΦ is defined as
< Y,X >:= E[XY ] for Y ∈ LΨ and X ∈MΦ.

Theorem 3.3 ([8]). Let ρ : MΦ → (−∞,∞] be a convex monetary risk measure
with core(dom ρ) ̸= ∅. Then ρ is real-valued, ρ# is a penalty function on DΨ

satisfying the growth condition (G), and

ρ(X) := max
Q∈DΨ

{EQ[−X]− ρ#(Q)} X ∈MΦ. (3.4)

Moreover, if ρ = ργ for a penalty function γ on DΨ, then ρ# is the greatest
convex, σ(LΨ,MΦ)-lower semicontinuous minorant of γ, where ρ# is given by

ρ#(Q) := sup
X∈MΦ

{EQ[−X]− ρ(X)} Q ∈ DΨ.

Notice that ρ#(Q) = f∗(Q) for all Q ∈ DΨ, where f is defined as f(X) =
ρ(−X). By the definition of convex duality,

f∗(Y ) = sup
X∈MΦ

{Y (X)− f(X)} = sup
X∈MΦ

{E[Y X]− ρ(−X)} for Y ∈ DΨ. (3.5)

For X ∈ Aρ, we have ρ(−X) ≥ 0 since 0 = ρ(X −X) ≤ ρ(X) + ρ(−X) implies
−ρ(−X) ≤ ρ(X) ≤ 0. Thus the equation (3.5) becomes

ρ∗(−Q) = ρ#(Q) = sup
X∈Aρ

EQ[X] for Q ∈ DΨ. (3.6)
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Theorem 3.4 ([8]). Let ρ : MΦ → R ∪ {+∞} be a coherent risk measure with
acceptance set

Aρ := {X ∈MΦ : ρ(X) ≤ 0}.
If core(domρ) ̸= ∅, then ρ is real-valued and can be represented as

ρ(X) = max
Q∈Q

EQ[−X], X ∈MΦ, (3.7)

for the ∥ · ∥∗ϕ-bounded, convex set

Q := {Q ∈ DΨ : EQ[X] ≥ 0 for all X ∈ Aρ}.
Moreover, if R is a subset of DΨ such that ρ = ρR, then Q is the σ(LΨ,MΦ)-
closed, convex hull of R.

We designate by V and V ∗ two vector spaces placed in duality by a bilinear
pairing denoted by <,>.

Theorem 3.5 ([20]). Suppose X and Y are normed spaces. To each A : X → Y
corresponds a unique A∗ : Y ∗ → X∗ that satisfies

< Ax, y∗ >=< x,A∗y∗ >

for all x ∈ X and all y∗ ∈ Y ∗.

Suppose that ρ is a coherent risk measure on MΦ. Then EQ[−X] ≤ ρ(X)
holds for all X ∈MΦ and Q ∈ DΨ. If X ∈ Aρ, then E

Q[X] ≥ 0 since ρ(X) ≤ 0.
Conversely, suppose that EQ[X] ≥ 0 holds for all X ∈ Aρ. Since ρ(X+ρ(X)) =
0, X + ρ(X) belongs to Aρ and so EQ[X + ρ(X)] ≥ 0 by assumption, i.e.
EQ[−X] ≤ ρ(X) holds for all X ∈ Aρ. Thus we obtain the following equivalent
relations

Q := {Q ∈ DΨ : EQ[−X] ≤ ρ(X) ∀X ∈ Aρ} (3.8)

= {φ ∈ DΨ : E[φX] ≥ 0 ∀X ∈ Aρ}.

Theorem 3.6 ([7]). (Fenchel duality) Let X be a Banach space and let Y be
a barrelled locally convex topological vector space. Let f : X → (−∞,+∞]
and g : Y → (−∞,+∞] be a lower semicontinuous convex functions and let
A : X → Y be a closed densely defined linear map. Suppose that f and g satisfy
the condition

0 ∈ core (dom g −A dom f).

If p is defined as

p = inf
x∈X

{f(x) + g(Ax)}, (3.9)

then the dual expression of p is given by

d = sup
ϕ∈Y ∗

{−f∗(A∗ϕ)− g∗(−ϕ)}. (3.10)

Moreover, p = d and the supremum in the dual problem (3.10) is attained when-
ever finite.
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Let V be a real vector space. We denote the indicator functional of a convex
set A ⊂ V with

χA(ϕ) :=

{
0, ϕ ∈ A

+∞, ϕ ̸∈ A,
and the convex conjugate of the indicator functional χA(·) with χ∗

A : V ∗ →
R ∪ {+∞},

χ∗
A(u

∗) = sup
u∈V

{< u, u∗ > −χA(u)} = sup
u∈A

< u, u∗ >, u∗ ∈ V ∗.

The indicator functional χA is convex lower semicontinuous function if A is
convex set, termed the support function of A, and χ∗∗

A = χcoA, where coA
denotes the closure of the convex combination of A.

4. The Primal and Dual Problem in the Static Problem

Assume that the contingent claim H belongs to MΦ. Let the static problem
(2.2) be the primal problem with value

p := min
ψ∈R0

ρ((1− ψ)H) (4.11)

= min
ψ∈L∞

{ρ((1− ψ)H) + χR0(ψ)}, (4.12)

where χR0(ψ) is the indicator function.

Lemma 4.1. There exists a ψ ∈ R0 satisfying the static problem (2.2).

Proof. We reproduce the proof in [22]. The set of R = {ψ : Ω → [0, 1], FT −
measurable} is weak∗ compact as a weak∗ closed subset of the weak∗ compact
unit ball in L∞. Since the map ψ → supQ∗∈Pσ

EQ
∗
[ψH] is lower semicontinuous

in the weak∗ topology, the set R0 is weak∗ closed, and hence weak∗ compact.
Since ψ → supQ∗∈Pσ

{EQ∗
[ψH] − ρ#(Q∗) is lower semicontinuous in the weak∗

topology, there exists a ψ̃ ∈ R0 solving (2.2). �

If a convex risk measure is expressed as (3.4), then the expression of the
primal problem can be written as

p = min
ψ∈R0

{
sup
Q∈DΨ

{
EQ[(1− ψ)H]− ρ#(Q)

}}
. (4.13)

If a coherent risk measure is expressed as (3.7), then the expression of the
primal problem can be written as

p = min
ψ∈R0

{
sup
Q∈Q

EQ[(1− ψ)H]
}
. (4.14)

Theorem 4.2. Let ρ : MΦ → (−∞,∞] be a coherent or convex monetary risk
measure with core(dom ρ) ̸= ∅. Then the dual problem of the primal problem
(4.13) or (4.14) is given by

d = sup
Q∈DΨ

inf
ψ∈R0

{EQ[(1− ψ)H]− ρ#(Q)}, or (4.15)
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d = sup
Q∈Q

inf
ψ∈R0

{EQ[(1− ψ)H]}, (4.16)

respectively. Also the strong duality holds, i.e. p = d in each case of convex or
coherent risk measures. If ψ̃ is the solution of (4.13) or (4.14), and φ̃Q = dQ̃/dP

is the solution of (4.15) or (4.16), then (φ̃Q, ψ̃) is a saddle point of the function
EQ[(1− ψ)H]− ρ#(Q) or EQ[(1− ψ)H], respectively. Consequently we get

min
ψ∈R0

max
Q∈DΨ

{EQ[(1− ψ)H]− ρ#(Q)} = max
Q∈DΨ

min
ψ∈R0

{EQ[(1− ψ)H]− ρ#(Q)},

(4.17)

min
ψ∈R0

max
Q∈Q

EQ[(1− ψ)H] = max
Q∈Q

min
ψ∈R0

EQ[(1− ψ)H]. (4.18)

Proof. We follow the proof in [21, 22] with keeping in mind we are considering
the risk measures ρ defined on the Orlicz hearts, MΦ. Consider the primal
problem (4.12)

p = min
ψ∈L∞

{ρ((ψ − 1)H) + χR0(ψ)}.

To apply Fenchel duality Theorem (3.6), define A, f and g as

A : L∞ →MΦ by Aψ := Hψ,

f : L∞ → R ∪ {+∞} by f(ψ) := χR0(ψ),

g :MΦ → R ∪ {+∞} by g(X) := ρ(X −H),

respectively.
Notice that LΦ is a Banach space with the Luxemberg (or gauge) norm

∥X∥Φ := inf
{
λ > 0 : E

[
Φ
(∣∣∣X
λ

∣∣∣)] ≤ 1
}
,

and that L∞ ⊂ LΦ ⊂ L1(P ) since Φ is finite, regular on its proper domain and
convex. MΦ, which is a linear subspace of LΦ, is always closed and hence it is a
Banach space with the Luxemberg norm. MΦ is the ∥ · ∥Φ-closure of L∞ in LΦ.

Clearly A is linear. Suppose that ψn converges to ψ in ∥ · ∥∞. Then from the
inequality

E[|H(ψn − ψ)|] ≤ ∥ψn − ψ∥∞E[H], sup
Q∈Pσ

EQ[H] <∞,

we have H(ψn − ψ) converges to 0 P -a.s.. Since Φ is continuous, for λ > 0

Φ
(∣∣∣H(ψn − ψ)

λ

∣∣∣) → Φ(0) = 0 P − a.s. as n→ ∞.

Hence ∥H(ψn − ψ)∥Φ → 0 P -a.s. as n→ ∞. Thus A : L∞ →MΦ is a bounded
linear operator, and by Theorem (3.5) we have

∀ϕ ∈ L∞ ∀Y ∗ ∈ (MΦ)∗ < Aϕ, Y ∗ >=< ϕ,A∗Y ∗ >, i.e.

∀ϕ ∈ L∞ ∀Y ∗ ∈ (MΦ)∗
∫
Ω

HϕY ∗dP =

∫
Ω

ϕA∗Y ∗dP. (4.19)
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If there exists Ω1 ⊂ Ω such that P (Ω1) > 0 and A∗Y ∗ < HY on Ω1, then∫
Ω
HY ∗dP >

∫
Ω
A∗Y ∗dP for the function ϕ defined as ϕ(ω) = 1 on Ω1 and 0

otherwise. This is a contradiction to (4.19). So there is no such Ω1. Similarly we
can show that there exists no Ω2 ⊂ Ω such that P (Ω2) > 0 and A∗Y ∗ > HY ∗

on Ω2. Therefore A∗Y ∗ = HY ∗ = AY ∗ ∀Y ∗ ∈ (MΦ)∗ = LΨ, i.e. A = A∗. The
operator A is self-adjoined.

Let us show that 0 ∈ core(dom g - A dom f). Since dom f = MΦ = dom
g and 0 ∈ MΦ, we have MΦ ⊂U := dom g - A dom f = MΦ −HMΦ. For all
X ∈MΦ

0 + tX ∈MΦ ⊂ U for all 0 ≤ t ≤ ϵ, for some ϵ > 0.

Hence 0 ∈ U . Since R0 is closed and convex set, the indicator function f : L∞ →
R ∪ {+∞} is convex and lower semicontinuous. Since ρ : MΦ → R ∪ {+∞} is
lower semicontinuous convex monetary risk measure, the function g is lower
semicontinuous convex function. By Theorem (3.6), the dual problem d of the
primal problem (4.14) can be written by

d = sup
ϕ∈(MΦ)∗

{−f∗(A∗ϕ)− g∗(−ϕ)}. (4.20)

Notice that (MΦ)∗ = LΨ and A∗ : (MΦ)∗ → (L∞)∗. When Φ is finite-valued,
MΦ is a norm closed band of LΦ and its bidual is itself, i.e. MΦ = (MΦ)∗∗ =
(LΨ)∗.

Let’s derive the conjugate functions f∗ of f and g∗ of g. From the convex
duality, we have

f∗(A∗ϕ) = sup
X∈L∞

{< A∗ϕ,X > −f(X)} = sup
X∈L∞

{< Hϕ,X > −χR0(X)}

= sup
ψ∈R0

{< Hϕ,ψ >} = sup
ψ∈R0

E[ψHϕ], ϕ ∈ (MΦ)∗.

Also we have for Y ∗ ∈ LΨ

g∗(Y ∗) = sup
X∈MΦ

{< Y ∗, X > −g(X)} = sup
X∈MΦ

{< Y ∗, X > −ρ(X −H)}

= sup
X′∈MΦ

{< Y ∗, X ′ +H > −ρ(X ′)} = ρ∗(Y ∗)+ < Y ∗, H > .

If ρ is a convex risk measure, then from the equation (3.6)

ρ∗(Y ∗) = sup
X∈Aρ

E[−Y ∗X] = ρ#(−Y ∗) for Y ∗ ∈ DΨ.

Secondly, if ρ is a coherent risk measure, then its conjugate function dually
represented as

ρ(X) = sup
Q∈Q

EQ[−X] = sup
φQ∈Q

< X,−φQ >= χ∗
−Q(Y

∗).

Since Q is the σ(LΨ,MΦ)-closed, convex hull of R ⊂ DΨ if ρ = ρR, we have

ρ∗(Y ∗) = χ∗∗
−Q(Y

∗) = χ−coQ(Y
∗) = χ−Q(Y

∗).
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Hence the dual problem (4.20) becomes

d = sup
Y ∗∈LΨ

{− sup
ψ∈R0

E[ψHY ∗]+ < Y ∗,H > −ρ∗(−Y ∗)}

= sup
Y ∗∈LΨ

{ inf
ψ∈R0

E[(1− ψ)HY ∗]− ρ∗(−Y ∗)}. (4.21)

If ρ is a convex risk measure, then d in (4.21) becomes

d = sup
Q∈DΨ

{ inf
ψ∈R0

EQ[(1− ψ)H]− ρ#(Q)}.

If ρ is a coherent risk measure, then d in (4.21) becomes

d = sup
Q∈Q

{ inf
ψ∈R0

EQ[(1− ψ)H]}.

Since H ∈ MΦ and supQ∈MEQ[ψH] ≤ x̃, d is finite and the strong duality
hold p = d. Consider the case of the convex risk measure ρ. It can be shown
similarly in case of the coherent risk measure. Let ψ̃ be the solution of the primal
problem (4.13) and φ̃Q the solution of the dual problem (4.15).

Since

p = sup
Q∈DΨ

{EQ[(1− ψ̃)H]− ρ#(Q)} ≥ E[φ̃Q(1− ψ̃)H]− ρ#(φ̃Q) and

d = inf
ψ∈R0

{E[φ̃Q(1− ψ)H]− ρ#(Q)} ≤ E[φ̃Q(1− ψ̃)H]− ρ#(φ̃Q),

we have

[φ̃Q(1− ψ̃)H]− ρ#(φ̃Q) ≤ p = d ≤ E[φ̃Q(1− ψ̃)H]− ρ#(φ̃Q).

Hence (4.17) holds. (φ̃Q, ψ̃) is a saddle point of the function E[φQ(1− ψ)H]−
ρ#(φQ). �

5. The Existence of Minimum of a Primal Problem

Definition 5.1. Let f be a proper function defined on a topological vector space
V and let x0 ∈ domf . A vector x∗ ∈ V ∗ is said to be a subgradient of a convex
function f at a point x0 if

f(x0) ≥ f(x)+ < x∗, x0 − x >, ∀x ∈ V. (5.22)

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and
is denoted by ∂f(x0), which is a closed convex subset of the dual V ∗.

The condition (5.22) has a simple geometric meaning when f is finite at x,
i.e. it says that the graph of the affine function h(z) = f(x)+ < x∗, z − x > is a
non-vertical supporting hyperplane to the convex set epif at the point (x, f(x)).

Theorem 5.1. Let f be a convex function. Then 0 ∈ ∂f(x∗) if and only if f
attains its minimum at x∗.



Coherent and Convex Hedging on Orlicz Hearts 425

In the primal problem (4.12), the convex function h : ψ → ρ((ψ − 1)H) +

χR0(ψ) attains its minimum at ψ̃ if and only if

0 ∈ ∂{ρ((ψ − 1)H) + χR0(ψ)}
if and only if there exist a φ such that

−φ ∈ ∂{ρ((ψ − 1)H)} and φ ∈ ∂{χR0(ψ)} (5.23)

by the Theorem (5.1).

Proposition 5.2. If ρ : MΦ → R ∪ {∞} is a coherent risk measure with core
(dom ρ) ̸= ∅ in (5.23), then we have

max
ψ∈R0

E[φQψH] = E[φ̃Qψ̃H],

φ̃Q = arg min
Q∈Q

E[φQ(ψ̃ − 1)H].

Proof. First we calculate ∂χR0(ψ̃). The φ belongs to ∂χR0(ψ̃) if and only if

χR0(ψ̃) ≥ χR0(ψ)+ < φ, ψ̃ − ψ > ∀ψ ∈ MΦ if and only if ψ̃ ∈ R0 and <

φ,ψ − ψ̃ >≤ 0 ∀ψ ∈ R0. Thus we have

E[φψ] ≤ E[φψ̃] ∀ψ ∈ R0 ⇐⇒ max
ψ∈R0

E[φψ] = E[φψ̃].

Secondly, define function f as f(ψ) = g(Aψ) = ρ(Aψ−H) to calculate ∂{ρ((ψ−
1)H)}. φ ∈ ∂g(Aψ̃) if and only if g(Aψ̃) ≥ g(Aψ)+ < φ,Aψ̃−Aψ >= g(Aψ)+ <

A∗φ, ψ̃ − ψ > if and only if f(ψ̃) ≥ f(ψ)+ < A∗φ, ψ̃ − ψ > if and only if

A∗φ ∈ ∂f(ψ̃).
Since shifting by a constant does not change the subdifferential of a convex

function, we have ∂{ρ((ψ − 1)H)} = A∗∂ρ(Aψ − H) = A∗∂ρ(Aψ). By the
definition of the subdifferential,

−φ ∈ ∂ρ(X̃) ⇐⇒ ρ(X) ≥ ρ(X̃)+ < −φ,X − X̃ > ∀X ∈MΦ. (5.24)

Putting X = λX̃ for λ > 0 and the positive homogeneity of ρ gives

(λ− 1) < −φ, X̃ >≤ (λ− 1)ρ(X̃).

Since (λ− 1) is either positive or negative, we have

ρ(X̃) =< −φ, X̃ > .

So the inequality (5.24) reduces to

ρ(X) ≥< −φ,X >= −E[φX] ∀X ∈MΦ.

From the relation (3.8), we can see φ ∈ DΨ is a Radon-Nikodym derivative of

a measure Q̃ ∈ Q, which is denoted by φ̃Q = dQ̃/dP . Conversely, if ρ(X̃) =<

−φ, X̃ >, then by the expression of ρ (3.7)

ρ(X) ≥ −E[φ̃QX] = ρ(X̃)+ < −φ̃Q, X − X̃ > .

This implies that −φ̃Q ∈ ∂ρ(X̃). Thus we have

∂ρ(X̃) = {−φ̃Q ∈ DΨ |Q ∈ Q and ρ(X̃) = −E[φ̃QX̃]}.
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Therefore, we have the relation

−E[φ̃QX̃] = ρ(X̃) = sup
Q∈Q

EQ[−X̃] = − inf
Q∈Q

EQ[X̃].

This becomes

E[φ̃QX̃] = inf
Q∈Q

EQ[X̃], i.e. φ̃Q = arg min
Q∈Q

E[φQX̃].

Hence the subdifferential of ρ is

∂ρ(X̃) = {−φ̃Q ∈ DΨ | φ̃Q ∈ arg min
Q∈Q

E[φQX̃]}.

We conclude that

∂{ρ((ψ̃ − 1)H)} = {−φ ∈ DΨ |φ = Hφ̃Q, φ̃Q ∈ arg min
Q∈Q

E[φQ(ψ̃ − 1)H)]}

since A∗ = H. �
For each Q ∈ Q define p(Q) as

p(Q) := max
ψ∈R0

EQ[ψH]. (5.25)

In the following Theorem (5.3), it is shown that Fenchel duality d(Q) of p(Q) is
given by

d(Q) := inf
λ∈Λ+

{∫
Ω

[
HφQ −H

∫
Pσ

zQ∗dλ
]
dP + x̃λ(Pσ)

}
. (5.26)

Theorem 5.3 ([21, 22]). Strong duality holds, i.e.

d(Q) = p(Q) ∀Q ∈ Q.

Moreover, for each Q ∈ Q there exists a solution λ̃Q to (5.26). The optimal

randomized test ψ̃Q of (5.25) has the following structure.

ψ̃Q(ω) :=

{
1, HφQ > H

∫
Pσ
zQ∗dλ̃Q(Q

∗)

0, HφQ < H
∫
Pσ
zQ∗dλ̃Q(Q

∗),
P − a.s.

with

EQ
∗
[ψ̃QH] = x̃ λ̃Q − a.s.

Proof. Th proof can be done in the same fashion as in [22] except the proof of
the continuity of the linear operator B : (MΦ, ∥ · ∥Φ) → (L, τ(L,Λ)). Let S
be a σ-algebra generated by all subsets of Pσ. Let L be the linear space of all
bounded and measurable real functions on (Pσ,S). The order is given on the
space L like

l1 ≤ l2, l1, l2 ∈ L ⇐⇒ l2 − l1 ∈ L := {l ∈ L | l(Q) ≥ 0 ∀Q ∈ Pσ}.
Let Λ be the space of all σ-additive signed measures on (Pσ,S) with bounded
variation. For l ∈ L and Q ∈ Λ define the bilinear form < l,Q >=

∫
Pσ
l dQ. If

we consider the space L with the Mackey topology τ(L,Λ), then the topological
dual of (L, τ(L,Λ)) is Λ and L is a barrelled space.
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Define a linear operator B : (MΦ, ∥ · ∥Φ) → (L, τ(L,Λ)) by

(Bψ)(Q) = −
∫
Hψ dQ for Q ∈ Pσ.

Then it can be shown that B is continuous. Let ψn → ψ in (MΦ, ∥ · ∥Φ), i.e.
∥ψn − ψ∥Φ → 0 as n → ∞. Since |EQ[(ψn − ψ)]| ≤ ∥Q∥∗Φ∥(ψn − ψ)∥Φ, ψn
converges to ψ Pσ-a.s. Hence ∥ψn − ψ∥∞ → 0 as n→ ∞ by Theorem.

∥B(ψn − ψ)(Q)∥Φ = |EQ[H(ψn − ψ)]| ≤ sup
Q∈Pσ

EQ[H]∥ψn − ψ∥∞.

Also Bψn converges in the weaker topology τ(L,Λ).
So Bψn → Bψ in (L, ∥ · ∥L), where ∥l∥L := supQ∈Pσ

|l(Q)|. See [22] for the
rest of the proof. �

From the equation (4.15), we have

max
Q∈DΨ

min
ψ∈R0

{EQ[(1− ψ)H]− ρ#(Q)} = max
Q∈DΨ

{EQ[H]− p(Q)− ρ#(Q)}

= max
Q∈DΨ

{EQ[H]− d(Q)− ρ#(Q)}

= max
Q∈DΨ,λ∈Λ+

{
EP

[
HφQ ∧H

∫
Pσ

φQ∗dλ
]
− x̃λ(Pσ)− ρ(Q)#

}
. (5.27)

There exists Q̃ maximizing the equation (4.15) with respect to Q ∈ DΨ. From

the Theorem (5.3), there exists a solution λ̃ = λ̃Q̃ to (5.26). Thus there exists a

solution (Q̃, λ̃) of the equation (5.27).

Theorem 5.4 ([22]). Let (Q̃, λ̃) be the solution pair of (5.27). Then the solution
of the static optimization problem (2.2) is

ψ(ω) :=

{
1, HφQ > H

∫
Pσ
φQ∗dλ̃Q(Q

∗)

0, HφQ < H
∫
Pσ
φQ∗dλ̃Q(Q

∗),
P − a.s.

with

EQ
∗
[ψ̃H] = x̃ λ̃− a.s.

(ψ̃, φ̃Q) is the saddle point of Theorem (4.2). (x̃, φ̃) solves the dynamic convex
hedging problem (2.1), where φ̃ is the superhedging strategy of the modified claim

ψ̃H.
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