DOI QR코드

DOI QR Code

Mechanical Constitutive Model for Frozen Soil

동토지반에 대한 역학적 구성모델

  • 신호성 (울산대학교 건설환경공학부) ;
  • 김지민 (울산대학교 건설환경공학부) ;
  • 이장근 (한국건설기술연구원) ;
  • 이승래 (한국과학기술원 건설및환경공학과)
  • Received : 2012.02.20
  • Accepted : 2012.05.16
  • Published : 2012.05.31

Abstract

Recently, growing interests in frozen ground have stimulated us to advance fundamental theories and systematic researches on soil behavior under freezing conditions. Unlike the well-established soil mechanics theory, temperature variation and phase change of pore-water cause water migration to cold side, ground heaving, sharp increase in earth pressure, etc., which bring about serious problems in frozen geotechnical structures. Elasto-plastic mechanical constitutive model for frozen/unfrozen soil subjected to fully coupled THM phenomena is formulated based on a new stress variable that is continuous in frozen-unfrozen transitional regions. Numerical simulations are conducted to discuss numerical reliability and applicability of the developed constitutive model: one-dimensional heaving pressure, tri-axial compression test, and one-side freezing tests. The numerical results show that developed model can efficiently describe complex THM phenomena of frozen soil, and they can be utilized to analyze and design the geotechnical structures under freezing conditions, and predict their long-term behavior.

최근 동결지반의 다양한 문제들에 대한 관심이 증대하면서 동결의 영향을 받는 지반의 거동특성에 관한 이론정립 및 체계적인 연구의 필요성이 제기되고 있다. 기존의 정립된 토질역학 이론과는 달리 동결지반에서 온도의 영향과 간극수의 동결에 의한 상변화는 간극수의 이동, 지반팽창, 작용토압의 급격한 증가 등 여러가지 문제들을 야기한다. 본 논문에서는 비동결-동결 전이 상태에서 연속성을 갖는 새로운 응력변수를 도입하여, 동결 작용을 받는 다공질 재료에 대한 THM 역학적 탄소성 구성모델을 유도하였다. 개발된 구성모델을 1차원 팽창압, 동결토의 삼축압축 강도 그리고 일방향 동결실험에 적용하여 해의 안정성과 구성모델의 적용성에 대하여 논의하였다. 수치해석 결과는 동결토의 복잡한 THM현상들을 효과적으로 묘사할 수 있었으며, 동결의 영향하에 있는 지반구조물의 해석과 설계 및 시공될 구조물의 장기거동예측에 활용될 수 있을 것이다.

Keywords

References

  1. Alonso, E. E., Gens, A., and Josa, A. (1990), "A constitutive model for partly saturated soils", Geotechnique, Vol.40, No.3, pp.405-430. https://doi.org/10.1680/geot.1990.40.3.405
  2. Arvidson, W. D., Morgenstern, N. R. (1977), "Water flow induced by soil freezing", Can.Geotech. J., Vol.14, pp.237-245. https://doi.org/10.1139/t77-024
  3. Andersland, O. B., Ladanyi, B. (2004), "Frozen Ground Engineering", John wiley과 Sons.
  4. Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L. C., and van Genuchten, M. Th. (2004), "Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications", Vadosezonej., Vol.3, pp.693-704.
  5. Hoekstra, P. (1966), "Moisture movement in soils under temperature gradients with the cold-side temperature below freezing", Water Resour. Res., Vol.2, No.2, pp.241-250. https://doi.org/10.1029/WR002i002p00241
  6. Henry, K. S. (2000), "A review of the thermodynamics of frost heave", CRREL, US Army Corps of Engineers.
  7. Kang, J. M., Kim, H. S., Hong, S. S., Kim, Y. S. (2009a), "A fundamental study on behavior of pipeline during ground freezing in Vladivostok site, Russia", Korean Geo-Environmental conference, pp.254-257.
  8. Kang, J. M., Kim, H. S. (2009b), "An Study on Efficiency and Application of Thermal Siphon in the Permafrost", International Symposium on Urban Geotechnics, pp.963-966.
  9. Kim, Y. J. (2003), "An Experimental Study on the Waste Polyethylene Aggregate for Construction Materials", Journal of Korean Geo-Environmental Society, Vol.4, No.4, pp.5-16.
  10. Kim, Y. S., Kang, J. M., Hong, S. S., Kim, K. J. (2010), "Heat Transfer Equation and Finite Element Analysis Considering Frozen Ground Condition the Cyclic Loading", J. Korean Geosyn the tics Society Vol.9 No.3, pp.39-45.
  11. Konrad, J. M., Morgenstern, N. R., (1981), "The segregation potential of a freezing soil", Can. Geotech. J., Vol.18, pp.482-491. https://doi.org/10.1139/t81-059
  12. Konrad, J. M., Morgenstern, N. R., (1982), "Effects of applied pressure on freezing soils", Can. Geotech. J., Vol.19, pp.494-505. https://doi.org/10.1139/t82-053
  13. Konrad, J. M. (1999), "Frost susceptibility related to soil index properties", Can. Geotech. J., Vol.36, pp.403-417. https://doi.org/10.1139/t99-008
  14. Liu, Z., Yu, X. (2011), "Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation", Acta. Geotechnica., Vol.6, pp.51-65. https://doi.org/10.1007/s11440-011-0135-6
  15. Mageau, D. W., Morgenstern, N. R. (1980), "Observations on moisture migration in frozen soils", Can. Geotech. J., Vol.17, No.1, pp.54-60. https://doi.org/10.1139/t80-005
  16. Michalowski, R. L., Zhu, M. (2006), "Frost heave modelling using porosity rate function", Int. J. Numer. Anal. Meth. Geomech., Vol.30, pp.703-722. https://doi.org/10.1002/nag.497
  17. Nishimura, S., Gens, A., Olivella, S. and Jardine, R. J. (2009), "THM-coupled finite element analysis of frozen soil: formulation and application", Geotechnique, Vol.59, No.3, pp.159-171. https://doi.org/10.1680/geot.2009.59.3.159
  18. Painter S. L. (2011), "Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications", Comput. Geosci., Vol.15, pp.69-85. https://doi.org/10.1007/s10596-010-9197-z
  19. Phillips, R., Clark, J. I., and Hanke, R. (2002), "Pipeline frost heave modeling", Proc. Int. Conf. on physical modeling in geotechnics, St John's, NL, pp.313-318.
  20. Sheng, D., Gens, A., Fredlund, D. G., and Sloan, S. W. (2008), "Unsaturated soils: From constitutive modelling to numerical algorithms", Computers and Geotechnics, Vol.35, pp.810-824. https://doi.org/10.1016/j.compgeo.2008.08.011
  21. Shin, E. C., Kang, J. G., Park, J. J. (2009), "Thermal Stability in Underground Structure with Ground Freezing", Journal of Korean Geotechnical Society, Vol.25, No.3, pp.65-74.
  22. Shin, E. C., Park, J. J. (2003), "An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils", Journal of Korean Geotechnical Society, Vol.19, No,2, pp.65-74.
  23. Shin, E. C., Ryu, B. H., Park, J. J. (2010), "The Freezing Characteristics of Pavement Layer Using the Field Road Model Test", Journal of Korean Geotechnical Society, Vol.26, No.7, pp.71-80.
  24. Shin, H. (2011), "Formulation of Fully Coupled THM Behavior in Unsaturated soil", Journal of Korean Geotechnical Society, Vol.27, No.3, pp.75-83.
  25. Taber, S. (1929), "Frost heaving", Journal of Geology, Vol.37, No.5, pp.428-461. https://doi.org/10.1086/623637
  26. Tan, X., Chen, W., Tian, H., Cao, J. (2011), "Water flow and heat transport including ice/water phase change in porous media: Numerical simulation and application", Cold Regions Sci. and Tec., Vol.68, pp.74-84. https://doi.org/10.1016/j.coldregions.2011.04.004
  27. Terzaghi, K. (1936), "The shear resistance of saturated soils", Proceedings for the 1st .International Conference on Soi lMechanics and Foundation Engineering, Cambridge, MA, pp.54-56.
  28. Thomas, H. R., Cleall, P., Li, Y. C., Harris, C., and Kern-Luetschg, M. (2009), "Modelling of cryogenic processes I permafrost and seasonally frozen soil", Geotechnique, Vol.59, No.3, pp.173-184. https://doi.org/10.1680/geot.2009.59.3.173
  29. Ting, J. M. (1981), "The creep of Sand: Qualitative and Quantitative Models", Res. Rep, pp.81-85.
  30. Ting, J. M., Martin, R. T., and Ladd, C. C. (1983), "Mechanisms of strength for frozen sand", J. Geotech. Eng. ASCE, Vol.109, No.10, pp.1181-1185. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:9(1181)
  31. Van Genuchten, M. Th. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil science society of America journal, Vol.44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Cited by

  1. 메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발 vol.30, pp.9, 2012, https://doi.org/10.7843/kgs.2014.30.9.67
  2. Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen vol.11, pp.22, 2021, https://doi.org/10.3390/app112210834