DOI QR코드

DOI QR Code

Characterization and Formation Mechanisms of Clogging Materials in Groundwater Wells, Mt. Geumjeong Area, Busan, Korea

부산 금정산 일대 지하수공내 공막힘 물질의 특징과 형성원인

  • Received : 2012.02.09
  • Accepted : 2012.03.23
  • Published : 2012.03.30

Abstract

The physical, chemical, and biological properties of clogging materials formed within groundwater wells in the Mt. Geumjeong area, Busan, Korea, were characterized. The particle size distribution (PSD) of clogging materials was measured by a laser analyzer. XRD, SEM, and TEM analyses were performed to obtain mineralogical information on the clogging materials, with an emphasis on identifying and characterizing the mineral species. In most cases, PSD data exhibited an near log-normal distribution; however, variations in frequency distribution were found in some intervals (bi-or trimodal distributions), raising the possibility that particles originated from several sources or were formed at different times. XRD data revealed that the clogging materials were mainly amorphous ironhydroxides such as goethite, ferrihydrite, and lapidocrocite, with lesser amounts of Fe, Mn, and Zn metals and silicates such as quartz, feldspar, micas, and smectite. Reddish brown material was amorphous hydrous ferriciron (HFO), and dark red and dark black materials were Fe, Mn-hydroxides. Greyish white and pale brown materials consisted of silicates. SEM observations indicated that the clogging materials were mainly HFO associated with iron bacteria such as Gallionella and Leptothrix, with small amounts of rock fragments. In TEM analysis, disseminated iron particles were commonly observed in the cell and sheath of iron bacteria, indicating that iron was precipitated in close association with the metabolism of bacterial activity. Rock-forming minerals such as quartz, feldspar, and micas were primarily derived from soils or granite aquifers, which are widely distributed in the study area. The results indicate the importance of elucidating the formation mechanisms of clogging materials to ensure sustainable well capacity.

금정산 일대 지하수공으로부터 공막힘 물질(clogging material)의 형성원인과 특성을 연구하였다. 공막힘 원시료는 레이저입도측정기를 이용하여 입도분포 분석을 하였고, 광물분석, 미세구조특성분석을 위하여 X-선회절분석(XRD)과 전자현미경(SEM, TEM)분석을 실시하였다. 대부분의 시료들은 로그정규분포에 가까운 입도분포의 특성을 나타내나 일부 시료에서는 여러 구간에서 높은 빈도분포를 보인다. 이 같은 입도특징은 입자의 형성단계가 다양하여 입자의 크기가 다르거나, 물질의 종류 자체가 다름을 의미한다. XRD 분석결과에 의하면, 공막힘 물질들은 주로 침철석, 페리하이드라이트, 래피도크로사이트와 같이 결정도가 낮은 철수산화물이 우세하며, 일부는 철, 망간, 아연의 금속물질, 또는 석영, 장석, 운모 및 스멕타이트 등으로 구성된다. 적갈색 시료의 경우 철수산화물, 암적색 및 암흑색 시료는 철수산화물, 망간수산화물, 회백색 및 연갈색 시료는 스멕타이트, 석영, 장석, 철수산화물 등으로 이루어진다. SEM하에서 공막힘 물질은 주로 철수산화물과 미량의 암편으로 구성되는데, 철박테리아의 일종인 Gallionella와 Leptothrix가 철수산화물과 흔히 수반된다. TEM하에서 철박테리아는 협막과 내부에 철수산화물의 덩어리를 산점상의 형태로 보유하고 있어 대사과정에서 철의 침전작용과 밀접하게 관련됨을 보인다. 석영, 장석, 백운모와 같은 조암광물은 지하수공 분포지역인 금정산 일대의 화강암편으로부터 유래한 것으로 토양이나 대수층으로부터 유래되었다. 지하수공의 성능을 잘 유지하려면 공막힘물질의 형성원인 규명이 중요한 과제이다.

Keywords

References

  1. 국토해양부, 한국수자원공사, 2010, 2009 지하수 조사연보, 635p
  2. 김규범, 최두형, 박준형, 황기섭, 2011, 지하수 우물 재개발 및 관리 기술, SWRRC Technical Report TR 2011-31, 수자원의 지속적 확보기술개발 사업단, 94p.
  3. 이정환, 함세영, 한석종, 옥순일, 차은지, 조희남, 추창오, 김무진, 2011, 공기-브러쉬와 폭약 세척 방법에 의한 암반관정의 세척 효과 검증, 지질공학, 21(4), 369-379.
  4. 추창오, 함세영, 이정환, 한석종, 김무진, 2011, 지하수공내 공막힘 물질의 광물학적, 수리지질학적 특성 연구: 부산 금정산 일대, 2011년 춘계 지질과학기술 공동학술대회 논문집, p. 307.
  5. Chapelle, F. H., 2001, Ground-Water Microbiology and Geochemistry, John Wiley and Sons, Inc. 477p.
  6. Cornell, R.M. and Schwertmann, U., 2003, The Iron Oxide. Structure, Properties, Reactions, Occurrences and Uses. 2nd Ed., Wiley-VCH GmbH and Co. KGaA. 664p.
  7. Cullimore, D. R., 2008, Practical Manual of Groundwater Microbiology. CRC Press, 379p.
  8. Cullimore, D. R. and McCann, A. E., 1978, The identification, cultivation and control of iron bacteria in ground water, In: Skinner, F. A. and Shewan, J. M.(ed.), Aquatic Microbiology, New York Academic Press, 219-261.
  9. Emerson, D., 2000, Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH, In: Lovley, D. R.(ed.), Environmental Microbe-Metal Interactions, ASM Press, 31-52.
  10. Fortin, D., Davis, B., and Beverridge, T. J., 1996, Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings, FEMS Microbiol. Ecol., 21, 11-24. https://doi.org/10.1111/j.1574-6941.1996.tb00329.x
  11. Ghiorse, W. C., 1984, Biology of iron-and manganese depositing bacteria, Annual Review of Microbiology, 38, 515-550. https://doi.org/10.1146/annurev.mi.38.100184.002503
  12. Hallbeck, L. and Pedersen, K., 1990, Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea, Jour. Gen. Microbiol., 136, 1675-680. https://doi.org/10.1099/00221287-136-9-1675
  13. Hallberg, R. and Ferris, F. G., 2004, Biomineralization by Gallionella, Gemicrobiol. Jour., 21, 325-330. https://doi.org/10.1080/01490450490454001
  14. Hamm, S.-Y., Lee, J.-H., Han, S. J., Cho, H. N., Lee, S. Y., and Ok, S.-I., 2010, Verifying well rehabilitation using hydraulic test and geophysical well log, 2010 Annual Meeting, Korea Soc. Ground. Soil, 219.
  15. Hanert, H. H., 1981, The genus Gallionella. In: Starr M. P., Stolp, H., Truper, H. G., Balows, A., Schlegel, H. G.,(eds.), The Prokaryotes, A Handbook on Habitats, Isolation, and Identification of Bacteria, Berlin, Springer, 509-515.
  16. Hanert, H. H., 1992, The genus Gallionella, In: Balows, A., Truper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H.,(eds.), The Prokaryotes, vol. IV, Springer-Verlag, 4082-4088.
  17. Houben, G. and Treskatis, C., 2007, Water well rehabilitation and reconstruction, McGraw-Hill Companies, Inc., 606p.
  18. James, R. E. and Ferris, F. G., 2004, Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring, Chem. Geol., 212, 301-311. https://doi.org/10.1016/j.chemgeo.2004.08.020
  19. Katsoyiannis, I. A. and Zouboulis, A. I., 2004, Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization, Water Res., 38, 1922-1932. https://doi.org/10.1016/j.watres.2004.01.014
  20. Kucera, K.-H. and Wolfe, R. S., 1957, A selective enrichment method for Gallionella ferruginea, Jour. Bacteriol., 74, 344-349.
  21. Langmuir, D., 1997, Aqueous Environmental Geochemistry, Prentice Hall, 600p.
  22. Macalady, D. L., Langmuir, D., Grundl,, T., and Elzerman, A., 1990, Use of model generated $Fe^{3+}$ ion activities to compute Eh and ferric oxyhydroxide solubilities in anaerobic systems. In: Chemical Modeling in Aqueous Systems II, Melchior, D. C. and Bassett. R. L.(ed), Am. Chem. Soc. Symp. Ser., 416, Washington, DC. Am. Chem. Soc., 350-367.
  23. Sogaard, E. G., Aruna, R., Abraham-Peskir, J., and Koch, C. B., 2001, Condition for biological precipitation of iron by Gallionella ferruginea in a lightly polluted ground water, Appl. Geochem., 16, 1129-1137. https://doi.org/10.1016/S0883-2927(01)00014-2
  24. Tuhela, L., Carlson, L., and Tuovinen, O. H., 1997, Biochemical transformations of Fe and Mn in oxic groundwater and well water environments, Jour. Env. Sci. Health, A32, 407-426.
  25. van Beek, C. G. E. M. and Kooper, W. F., 1980, The clogging of shallow discharge wells in the Netherlands river region, Ground Water, 18, 578-586. https://doi.org/10.1111/j.1745-6584.1980.tb03652.x

Cited by

  1. High-pressure Air Impulse Technique for Rehabilitating Well and Its Application to a Riverbank Filtration Site in Korea vol.28, pp.10, 2012, https://doi.org/10.5322/jesi.2019.28.10.887
  2. Groundwater Productivity and Rehabilitation of Radial Collector Wells for Agriculture near Okseong Underground Dam vol.41, pp.4, 2012, https://doi.org/10.5467/jkess.2020.41.4.381