참고문헌
- M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. T. Silva, Point Set Surfaces, Proceedings of the conference on Visualization '01, (2001), 21-28.
-
N. Amenta, M. Bern and D. Eppstein, The crust and the
${\beta}$ -skeleton: combinatorial curve reconstruction, Graphical Models Image Process, 60 (1998), 125-135. https://doi.org/10.1006/gmip.1998.0465 - N. Amenta, S. Choi, and R. Kolluri, The power crust, in Proc. ACM Solid Modeling, (2001), 249-260.
- J. C. Carr, R. K. Beatson, J. B. Cherrie and T. J. Mitchell, W. R. Fright, B. C. McCallum, T. R. Evans, Reconstruction and Representation of 3D Objecets with Radial Basis Functions, Proceedings of ACM SIGGRAPH, (2001), 67-76.
- H. Edelsbrunner and E.P. Mucke, Three-dimensional alpha shapes, In Workshop on Volume Visualization, (1992), 75-105.
- S. Fleishman, D. Cohen-Or, M. Alexa, C. T. Silva, Progressive Point Set Surfaces, ACM Transactions on Graphics, 22 (2003), 997-1011. https://doi.org/10.1145/944020.944023
- T. Goldstein, X. Bresson and S. Osher, Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction, Journal of Scientific Computing, 45 (2010), 272-293. https://doi.org/10.1007/s10915-009-9331-z
- H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle, Surface reconstruction from unorganized points, Computer Graphics, 26 (1992), 71-78.
- X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 126 (1996), 202-212. https://doi.org/10.1006/jcph.1996.0130
- F. Losasso, F. Gibou and R. Fedkiw, Simulating Water and Smoke with an Octree Data Structure, Proceedings of ACM SIGGRAPH, (2004), 457-462.
- C. Min, F. Gibou and H. Ceniceros, A supra-convergent finite difference scheme for the variable coefficient Poisson equation on nongraded grids, Journal of Computational Physics, 218 (2006), 123-140. https://doi.org/10.1016/j.jcp.2006.01.046
- C. Min and F. Gibou, A second order accurate level set method on non-graded adaptive cartesian grids, Journal of Computational Physics, 225 (2007), 300-321. https://doi.org/10.1016/j.jcp.2006.11.034
- Y. Ohtake, A. Belyaev, M. Alexa, G. Turk and H.-P. Seidel, Multi-level Partition of Unity Implicits, Proceedings of ACM SIGGRAPH, (2003), 463-470.
- S. Osher and J. Sethian, Fronts propagating with curvature dependent speed, algorithms based on a Hamilton- Jacobi formulation, Journal of Computational Physics, 79 (1988), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
- S. Popinet, Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, 190 (2003), 572-600. https://doi.org/10.1016/S0021-9991(03)00298-5
- H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.
- A. Sharf, D. Alcantara, T. Lewiner, C. Greif, A. Sheffer, N. Amenta, D. Cohen-Or, Space-time Surface Reconstruction Using Incompressible Flow, ACM Transactions on Graphics, 27 (2008).
- C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, 77 (1988), 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
- J. Strain, Fast tree-based redistancing for level set computations, Journal of Computational Physics, 152 (1999), 664-686. https://doi.org/10.1006/jcph.1999.6259
- J. Ye, I. Yanovsky, B. Dong, R. Gandlin, A. Brandt and S. Osher, Multigrid Narrow Band Surface Reconstruction via Level Set Functions, CAM-Report 09-98 (2009).
- H. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method, Computer Vision and Image Understanding, 80 (2000), 295-314. https://doi.org/10.1006/cviu.2000.0875
- H. Zhao, S. Osher and R. Fedkiw, Fast Surface Reconstruction Using the Level Set Method, Proceedings of the IEEE Workshop on Variational and Level Set Methods(VLSM'01), Washington, DC, USA 2001.
- H. Zhao A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS, Mathematics of Computation, 74 (2004), 603-627. https://doi.org/10.1090/S0025-5718-04-01678-3
피인용 문헌
- Geodesic-based manifold learning for parameterization of triangular meshes vol.10, pp.4, 2016, https://doi.org/10.1007/s12008-014-0249-9