DOI QR코드

DOI QR Code

A Study on Mixed Filter Algorithm for Restoration of Image Corrupted by AWGN

AWGN에 훼손된 영상복원을 위한 복합 필터 알고리즘에 관한 연구

  • ;
  • 김남호 (부경대학교 제어계측공학과)
  • Received : 2012.02.10
  • Accepted : 2012.03.08
  • Published : 2012.05.31

Abstract

Nowadays, image processing has been applied in a variety of fields. In order to preserve the high quality of visual the degradation phenomenon for images should be removed. Noise is one of the representative elements cause of the degradation phenomenon and AWGN(additive white Gaussian noise) always damages images. In this paper, an mixed filter algorithm, which is based on parallel denoising method, is proposed to suppress AWGN. This algorithm parallels the spatial domain wiener filter and the wavelet domain thresholding method which thresholding function is selected based on scale level. The proposed modified thresholding function which considers the dependency between parent and child coefficient performs well on suppressing noise.

현재, 영상처리는 다양한 분야에서 활용되고 있으며, 영상의 우수한 화질을 위해 열화현상을 제거하여야 한다. 잡음은 열화현상의 대표적인 원인으로서, 영상은 AWGN(additive white Gaussian noise)에 의해 많이 훼손된다. 따라서 본 논문에서는 AWGN을 제거하기 위해, 공간영역에서의 워너 필터와 웨이브렛 영역에서의 임계값 잡음 처리방법을 병렬 연결하여 처리하는 복합 필터 알고리즘을 제안하였다. 웨이브렛 영역에서의 처리방법은 각 스케일에 따라 서로 다른 thresholding function을 사용하여 처리하며, 제안한 변형된 thresholding function은 parent 웨이브렛 계수와 child 웨이브렛 계수를 이용함으로서, 우수한 잡음제거 특성을 나타냈다.

Keywords

References

  1. Gonzalez R. C and Woods R. E, "Digital Image Processing", Addison-Wesley, 2003.
  2. Donoho, D. L. and Johnstone, "Ideal Spatial Adaptation via Wavelet Shrinkage", Technical Report, Department of Statistics, Stanford University, Tentatively, 1992.
  3. D. L. Donoho and I. M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," J. Amer. Statist. Assoc., vol. 90, no. 432, pp. 1200-1224, Dec. 1995. https://doi.org/10.1080/01621459.1995.10476626
  4. Gao Yinyu and Nam-Ho Kim, "Image Denoising using Adaptive Threshold Method in Wavelet Domain", International Journal of KIIECE, vol. 9, no. 3, pp. 767-772, December 2011.
  5. Gao Yinyu and Nam-Ho Kim, "Direction Information Concerned Algorithm for Removing Gaussian Noise In images", International Journal of KIICE, vol. 9, no. 6, pp. 762-766, DEC. 2011.
  6. D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal dependent noise", IEEE Trans. PAMI, vol. 7, pp. 165-177, 1985. https://doi.org/10.1109/TPAMI.1985.4767641
  7. J. S. Lee, "Digital image enhancement and noise filtering by use of local statistics", IEEE Trans. PAMI, vol. 2, pp. 165-168, 1980. https://doi.org/10.1109/TPAMI.1980.4766994
  8. L. Sendur and I.W. Selesnick, "Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency", IEEE Trans. Signal Proc. vol. 50, pp. 2744-2756, 2002. https://doi.org/10.1109/TSP.2002.804091
  9. L. Sendur and I.W. Selesnick, "Bivariate shrinkage with local variance estimation", IEEE Signal Process. Lett. vol. 9, pp. 438-441, 2002. https://doi.org/10.1109/LSP.2002.806054

Cited by

  1. 표준편차 및 3차 스플라인 보간법을 이용한 영상 복원 알고리즘에 관한 연구 vol.21, pp.9, 2012, https://doi.org/10.6109/jkiice.2017.21.9.1689