DOI QR코드

DOI QR Code

전기화학 반응에 의한 염화철 폐식각액의 재생 및 구리 회수에 관한 연구

A Study on Electrochemical Regeneration of Waste Iron-chloride Etchant and Copper Recovery

  • 투고 : 2012.03.22
  • 심사 : 2012.05.21
  • 발행 : 2012.06.30

초록

PCB에칭에 의해 발생한 염화철 폐식각액 중 염화철을 산화시키고 구리를 석출시키는 전기화학적 재생공정은 환경오염을 줄이면서도 부산물을 얻어내어 경제성이 크다. 그러나, 염화철 폐식각액은 철과 구리, 두 가지 금속이 함께 함유되어 있기 때문에 전해조에서 일어나는 반응이 복잡하다. 본 연구에서는 회분식 공정을 통하여 전기화학적인 염화철 산화 및 구리 석출반응의 특성을 조사하고 관련된 공정변수들의 최적 조건을 도출해내었다. 염화철의 산화는 항상 원하는 수준으로 되었으며, 탄소 음전극을 사용한 반응에서 $350mA/cm^2$의 전류밀도와 12 g/L의 구리 농도 조건에서, $Fe^{2+}$이온의 비율이 높을수록 구리 석출 효율이 높았다. 또한, 도출해낸 최적 조건을 바탕으로 Bench 장치 연속운전을 통해서 scale-up 가능성을 확인하였다.

Electrochemical regeneration of the iron chloride waste solution from PCB etching reduces environmental contamination and produces copper as by-product, so the economic feasibility is high. But iron chloride waste solution contains iron and copper and the reactions occurring in the electrolytic cell are complicated. In this work, the oxidation of iron chloride and copper deposition were examined through batch electrolysis and the optimum conditions of the process parameters were found. The oxidation of ferrous chloride was achieved easily to the desired level. The copper deposition efficiency was high in the reaction using the carbon cathode when the copper density was 12 g/L with the electric current density of $350mA/cm^2$, and the ratio of the $Fe^{2+}$ ion was high. In addition, the possibility of the scale-up was confirmed in continuous operation of bench reactor using the optimum conditions obtained.

키워드

참고문헌

  1. Walch, F. C., and Reade, G. W., "Electrochemical Techniques for the Treatment of Dilute Metal-ion Solutions," Environmental Oriented Electrochemistry, (Studies in Environmental Science 59), C.A.C. Sequeira, (Ed.), Elsevier, 5-40 (1994).
  2. Nam, S., Nam, C., Tak, Y., and Oh, S., "Study on the Regeneration of PCB Etchants in a Continuous Electrolytic Cell with On-Off Control System," J. of KSEE, 19(6), 773-784 (1997).
  3. Tanimura, T., Itoh, T., Kato, M., and Mikami, Y., "Electrolytic Regeneration of Iron(III) Chloride Etchant I. Batch Electrolysis," Denki Kagaku, 63(8), 737-743 (1995).
  4. Hillis, M. R., "The Electrolytic Regeneration of Spent Ferric Chloride Etchant," Trans. Inst. Met Finishing, 57, 73-77 (1979). https://doi.org/10.1080/00202967.1979.11870488
  5. Adaikkalam, P., Srinivasan, G. N., and Venkateswaran, K. V., "The Electrochemical Recycling of Printed-wiring-board Etchants," JOM., 54(6), 48-50 (2002). https://doi.org/10.1007/BF02701851
  6. C-Mac user manual (Qvis X100 Portable Photometer, http://www.c-mac.net).
  7. Nam, S., Nam, C., Tak, Y., and Oh, S., "Regeneration of PCB Etchants and Copper Recovery in a Batch-type Electrolytic Cell," J. of Korean Ind. & Eng. Chemistry, 8(2), 161-171 (1997).
  8. Belobaba, A. G., Maslii, A. I., and Shevtsova, O. N., "Regeneration of Iron(III) Chloride Etching Solutions Containing Organic Additives," Russian J. Appl. Chem., 76(11), 1747-1751 (2003). https://doi.org/10.1023/B:RJAC.0000018676.27970.94
  9. Lee, S., and Son, S., "Effect of Composition on the pH and Solution Potential of Mixed Solutions of Copper and Iron Chloride," J. Kor. Inst. of Resour. Recycling, 17(6), 17-20 (2008).
  10. Kim, W. H., "A Study on Electrochemical Regeneration of Etchant and Copper Recovery," Master's Dissertation, Hanyang University, Seoul, 2010.
  11. Sneed, M. C., Maynard, J. L., and Brasted, R. C., Comprehensive Inorganic Chemistry, D. Van Nostrand company Inc., 1954, pp. 47-78.
  12. Lee, M., Nicol, M. J., "Ionic Equilibria in Mixed Solutions of Cuprous and Cupric Chloride," J. of Kor. Inst. of metals and Mater., 46(1), 20-25 (2008).
  13. Lee, K., et al. "Method for Etchant Regeneration and Copper Recovery Using RGB Color Sensor" Korean Patent Appl. No. 10-2012-0029885 (2012).