DOI QR코드

DOI QR Code

초임계유체 공정과 분리기술의 응용

Application of Separation Technology and Supercritical Fluids Process

  • 윤순도 (전남대학교 공학대학 생명화학공학부) ;
  • 변헌수 (전남대학교 공학대학 생명화학공학부)
  • Yoon, Soon-Do (School of Biotechnology and Chemical Engineering, College of Engineering Science, Chonnam National University) ;
  • Byun, Hun-Soo (School of Biotechnology and Chemical Engineering, College of Engineering Science, Chonnam National University)
  • 투고 : 2012.05.25
  • 심사 : 2012.06.26
  • 발행 : 2012.06.30

초록

초임계유체기술은 최근 다양한 화학 산업 분야에서 새로운 관심을 모으고 있는 신기술의 하나라 할 수 있다. 초임계유체기술은 높은 용해성, 빠른 침투성, 빠른 물질 이동 등의 초임계유체 장점을 이용한 기술로써 친환경, 에너지 절감, 고효율성을 가진 현재로서 가장 효과적이고 실용적인 기술이라 하겠다. 이러한 특징을 가진 초임계유체기술을 이용한 응용 기술의 잠재력을 분석 및 평가하고 개발하는 것은 필수적이다. 따라서 본 총설에서는 초임계유체기술의 응용 측면에서 초임계유체내에서 고분자 중합 공정의 최적화를 위한 기초자료인 모노머/고분자의 고온 고압에서 초임계유체 내에서의 상거동 현상을 설명하고, 이러한 자료를 통해 초임계유체 내에서 특정물질을 분리 할 수 있는 분자인식고분자의 제조와 성능 평가에 대해 소개하였다.

Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

키워드

참고문헌

  1. Kirby, C. F., and McHugh, M. A., "Phase Behavior of Polymers in Supercritical Fluid Solvents," Chem. Rev., 99(2), 565- 602 (1999). https://doi.org/10.1021/cr970046j
  2. Dobbs, J. M., and Johnston, K. P., "Selectivities in Pure and Mixed Supercritical Fluid Solvents," Ind. Eng. Chem. Res., 26(7), 1476-1482 (1987). https://doi.org/10.1021/ie00067a035
  3. Cooper, A. I., "Polymer Synthesis and Processing Using Supercritical Carbon Dioxide," J. Mater. Chem., 10(2), 207-234 (2000). https://doi.org/10.1039/a906486i
  4. Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., and Lee, L., "A Review of $CO_2$ Applications in the Processing of Polymers," Ind. Eng. Chem. Res., 42(25) 6431-6456 (2003). https://doi.org/10.1021/ie030199z
  5. Alsoy, S., and Duda, J. L., "Processing of Polymers with Supercritical Fluids," Chem. Eng. & Technol., 22(11) 971-973 (1999). https://doi.org/10.1002/(SICI)1521-4125(199911)22:11<971::AID-CEAT971>3.0.CO;2-V
  6. Kendall, J. L., Canelas, D. A., Young, J. L., and DeSimone, J. M., "Polymerizations in Supercritical Carbon Dioxide," Chem. Rev., 99(2), 543-564 (1999). https://doi.org/10.1021/cr9700336
  7. Plunkett, R. J., "Tetrafluoroethylene Polymers," U.S. Patent No. 2,230,654 (1941).
  8. Nishiwaki, K., and Katou, M., "Fluoric/acrylic Composite Polymer Particles," Colloids and Surf. A, 153(1-3), 317-320 (1999). https://doi.org/10.1016/S0927-7757(98)00452-X
  9. Ameduri, B., and Boutevin, B., "Use of Telechelic Fluorinated Diiodides to Obtain Well-defined Fluoropolymers," J. Fluorine Chem., 100(1-2) 97-116 (1999). https://doi.org/10.1016/S0022-1139(99)00220-1
  10. Mokhtar, S. M., Abd-Elaziz, S. M., and Gomaa, F. A., "Synthesis Characterizations and Properties of A New Fluoromaleimide Polymer," J. Fluorine Chem., 131(5) 616-620 (2010). https://doi.org/10.1016/j.jfluchem.2010.02.003
  11. Xiang, Y., and Kiran, E., "Miscibility, Density and Viscosity of Poly (dimethylsiloxane) in Supercritical Carbon Dioxide," Polym., 36(25), 4817-4826 (1995). https://doi.org/10.1016/0032-3861(95)99298-9
  12. Gregg, C. J., Stein, F. P., and Radosz, M., "Phase Behavior of Telechelic Polyisobutylene (PIB) in Subcritical and Supercritical Fluids. 1. Inter- and Intra-association Effects for Blank, Monohydroxy, and Dihydroxy PIB (1K) in Ethane, Propane, Dimethyl Ether, Carbon Dioxide, and Chlorodifluoromethane," Macromolecules, 27(18), 4972-4980 (1994). https://doi.org/10.1021/ma00096a019
  13. Gregg, C. J., Stein, F. P., and Radosz, M., "Phase Behavior of Telechelic Polyisobutylene (PIB) in Subcritical and Supercritical Fluids. 2. PIB Size, Solvent Polarity, and Inter- and Intra-association Effects for Blank, Monohydroxy, and Dihydroxy PIB (11K) in Ethane, Propane, Carbon Dioxide, and Dimethyl Ether," Macromolecules, 27(18), 4981-4985 (1994). https://doi.org/10.1021/ma00096a020
  14. Shiho, H., and DeSimone, J. M., "Dispersion Polymerization of Glycidyl Methacrylate in Supercritical Carbon Dioxide," Macromolecules, 34(5), 1198-1203 (2001). https://doi.org/10.1021/ma0010074
  15. Dardin, A., Cain, J. B., DeSimone, J. M., Johnson Jr., C. S., and Samulski, E. T., "High-pressure NMR of Polymers Dissolved in Supercritical Carbon Dioxide," Macromolecules, 30(12), 3593-3599 (1997). https://doi.org/10.1021/ma961917e
  16. Buback, M., and Droge, T., "High-pressure Free-radical Copolymerization of Ethene and Butyl Methacrylate," Macromol. Chem. Phys., 200(1), 256-264 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1<256::AID-MACP256>3.0.CO;2-8
  17. McHugh, M. A., Rindfleisch, F., Kuntz, P. T., Schmaltz, C., and Buback, M., "Cosolvent Effect of Alkyl Acrylates on the Phase Behaviour of Poly (alkyl acrylates)-Supercritical $CO_2$ mixtures," Polym., 39(24), 6049-6052 (1998). https://doi.org/10.1016/S0032-3861(98)00038-X
  18. McHugh, M. A., and Guckes, T. L., "Separating Polymer Solutions with Supercritical Fluids," Macromolecules, 18(4), 674-680 (1985). https://doi.org/10.1021/ma00146a017
  19. Pan, C., and Radosz, M., "Phase Behavior of Poly(ethyleneco- hexene-1) Solutions in Isobutane and Propane," Ind. Eng. Chem. Res., 38(7), 2842-2848 (1999). https://doi.org/10.1021/ie9807405
  20. Kinzl, M., Luft, G., Adidharma, H., and Radosz, M., "SAFT Modeling of Inert-gas Effects on the Cloud-point Pressures in Ethylene Copolymerization Systems: Poly (ethylene-covinyl acetate) + Vinyl Acetate + Ethylene and Poly (ethyleneco- hexene-1) + Hexene-1 + Ethylene with Carbon Dioxide, Nitrogen, or n-Butane," Ind. Eng. Chem. Res., 39(2), 541-546 (2000). https://doi.org/10.1021/ie990627u
  21. Lora, M., and McHugh, M. A., "Phase Behavior and Modeling of the Poly(methyl methacrylate)-$CO_2$-methyl Methacrylate System," Fluid Phase Equilibria, 157(2), 285-297 (1999). https://doi.org/10.1016/S0378-3812(99)00043-6
  22. Wolf, B. A., and Blaum, G., "Measured and Calculated Solubility of Polymers in Mixed Solvents: Monotony and Cosolvency," J. Polym. Sci. : Part B : Polym. Phys., 13(6), 1115-1132 (1975). https://doi.org/10.1002/pol.1975.180130605
  23. Wolf, B. A., and Blaum, G., "Pressure Influence on True Cosolvency. Measured and Calculated Solubility Limits of Polystyrene in Mixtures of Acetone and Diethylether," Makomol. Chem., 177(4), 1073-1088 (1976). https://doi.org/10.1002/macp.1976.021770410
  24. Rindfleisch, F., DiNoia, T. P., and McHugh, M. A., "Solubility of Polymers and Copolymers in Supercritical $CO_2$." J. Phys. Chem., 100, 15581-15587 (1996). https://doi.org/10.1021/jp9615823
  25. Kiran, E., and Gokmenoglu, Z., "High-pressure viscosity and density of polyethylene solutions in n-pentane," J. Appl. Polym. Sci., 58(12), 2307-2324 (1995). https://doi.org/10.1002/app.1995.070581218
  26. Byun, H. S. Hasch, B. M. McHugh, M. A. Mahling, F. O. Busch, M., and Buback, M. "Poly (ethylene-co-butyl acrylate) Phase Behavior in Ethylene Compared to the Poly (ethyleneco- methyl acrylate)-ethylene System and Aspects of Copolymerization Kinetics at High Pressures," Macromolecules, 29 (5), 1625-1632 (1996). https://doi.org/10.1021/ma951311a
  27. Huang, S. H., and Radosz, M., "Equation of State for Small, Large, Polydisperse, and Associating Molecules," Ind. Eng. Chem. Res., 29(11), 2284-2294 (1990). https://doi.org/10.1021/ie00107a014
  28. Huang, S. H., and Radosz, M. "Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures," Ind. Eng. Chem. Res., 30(8), 1994-2005 (1991). https://doi.org/10.1021/ie00056a050
  29. Peng, D. Y., and Robinson, D. B., "A New Two-constant Equation of State," Ind. Eng. Chem. Fundam., 15(1), 59-64 (1976). https://doi.org/10.1021/i160057a011
  30. Wulff, G., "Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies," Angew. Chem. Int. Ed. Engl., 34(17), 1812-1832 (1995). https://doi.org/10.1002/anie.199518121
  31. Mosbach, K., "Molecular Imprinting," Trends Biochem. Sci., 19(1), 9-14 (1994). https://doi.org/10.1016/0968-0004(94)90166-X
  32. Shea, K. J., "Molecular Imprinting of Synthetic Network Polymers: the de novo Synthesis of Macromolecular Binding and Catalytic Sites." Trends Polym. Sci., 2, 166-173 (1994).
  33. Polyakov, M. V., Kuleshina, L. P., and Neimark, I. E., "On the Dependence of Silica Gel Adsorption Properties on the Character of Its Porosity," Zhur. Fiz. Khim., 10, 100-112 (1937).
  34. Dickey, F. H. "The Preparation of Specific Adsorbents," Proc. Natl. Acad. Sci., 35(5), 227-229 (1949). https://doi.org/10.1073/pnas.35.5.227
  35. Wulff, G., Sarhan, A., and Zabrocki, K., "Enzyme-analogue Built Polymers and Their Use for the Resolution of Racemates," Tetrahedron Lett., 14(44) 4329-4332 (1973). https://doi.org/10.1016/S0040-4039(01)87213-0
  36. Wulff, G., Vesper, W., Grobe-Einsler, R., and Sarhan, A. "Enzyme- analogue Built Polymers, 4. On the Synthesis of Polymers Containing Chiral Cavities and Their Use for the Resolution of Racemates," Makromol. Chem., 178(10), 2799- 2816 (1977). https://doi.org/10.1002/macp.1977.021781004
  37. Kempe, M., and Mosbach, K., "Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phases," J. Chromatogr. A, 691, 317-323 (1995). https://doi.org/10.1016/0021-9673(94)00820-Y
  38. Sreenivasan, K., and Sivakumar, R., "Interaction of Molecularly Imprinted Polymers with Creatinine," J. Appl. Polym. Sci., 66(13), 2539-2542 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971226)66:13<2539::AID-APP16>3.0.CO;2-S
  39. Sreenivasan, K., "Synthesis and Evaluation of A Beta Cyclodextrin- based Molecularly Imprinted Copolymer," J. Appl. Polym. Sci., 70(1), 15-18 (1998). https://doi.org/10.1002/(SICI)1097-4628(19981003)70:1<15::AID-APP3>3.0.CO;2-X
  40. Park, H. R., Yoon, S. D., Bang, E. Y., Rogers, K. R., and Chough, S. H., "Molecular Imprinting Polymers for the Separation of Toluic Acid Isomers," J. Appl. Polm.. Sci., 96, 650-654 (2005). https://doi.org/10.1002/app.21491
  41. Park, H. R., Yoon, S. D., Lee, J. C., and Chough, S. H., "Separation of Hydroxybenzoic Acid Isomers Using the Molecular Imprinting Technique," J. Appl. Polm. Sci., 105(5), 2824-2829 (2007). https://doi.org/10.1002/app.26265
  42. Davis, K., and Klibanov, A. M., "Molecular Imprinting of Proteins and Other Macromolecules Resulting in New Adsorbents," Biotechnol. Bioeng., 39, 176-185 (1992). https://doi.org/10.1002/bit.260390209
  43. Haginaka, J., and Kagawa, C., "Uniformly Sized Molecularly Imprinted Polymer for d-Chlorpheniramine, Evaluation of Retention and Molecular Recognition Properties in An Aqueous Mobile Phase," J. Chromatogr. A., 948(1-2), 77-84 (2002). https://doi.org/10.1016/S0021-9673(01)01262-6
  44. Wang, H. Y., Xis, S. L., Sun, H., Liu, Y. K., Cao, S. K., and Kobayashi, T., "Molecularly Imprinted Copolymer Membranes Functionalized by Phase Inversion Imprinting for Uracil Recognition and Permselective Binding," J. Chromatogr. B., 804(1), 127-134 (2004). https://doi.org/10.1016/j.jchromb.2004.01.036
  45. Reddy, P. S., Kobayashi, T., Abe, M., and Fujii, N., "Molecular Imprinted Nylon-6 as A Recognition Material of Amino Acids," Europ. Polym. J., 38(3), 521-529 (2002). https://doi.org/10.1016/S0014-3057(01)00212-9
  46. Schweitz, L., Andersson, L. I., and Nilsson, S., "Capillary Electrochromatography with Predetermined Selectivity Obtained through Molecular Imprinting," Anal. Chem., 69(6), 1179-1183 (1997). https://doi.org/10.1021/ac9607929
  47. Piletsky, S. A., Dubei, I. Y., Fedroyak, D. M., and Kukhar, V. P., "Sustrate-selective Polymeric Membranes: Selective Transferof Nucleic Acid Components," Biopolym. Kletka, 6, 55- 58 (1990).
  48. Green, R. J., Frazier, R. A., Shakesheff, K. M., Davies, M. C., Roberts, C. J., and Tendler, S. J. B., "Surface Plasmon Resonance Analysis of Dynamic Biological Interactions with Biomaterials," Biomaterials, 21, 1823-1835 (2000). https://doi.org/10.1016/S0142-9612(00)00077-6
  49. Piletsky, S. A., Panasyuk, T. L., Piletskaya, E. V., and Nicholls, I. A.,"Receptor and Transport Properties of Molecularly Imprinted Polymer Membranes-A Review," J. Memb. Sci., 157, 263-278 (1999). https://doi.org/10.1016/S0376-7388(99)00007-1
  50. McNiven, S., Yokobayashi, Y., Cheong, S. H., and Karube, I., "Enhancing the Selectivity of Molecularly Imprinted Polymers," Chem. Lett., 12, 1297-1298 (1997).
  51. Gamez, P., Dunjic, B., Pinel, C., and Lemaire, M., "Molecular Imprinting Effect in the Synthesis of Immobilized Rhodium Complex Catalyst (IRC cat)," Tetra. Lett., 36, 8779-8783 (1995). https://doi.org/10.1016/0040-4039(95)01874-H
  52. Araki, K., Maruyama, T., Kamiya, N., and Goto, M., "Metal ion-selective membrane prepared by surface molecular imprinting," J. Chromatogr. B, 818(2), 141-145 (2005). https://doi.org/10.1016/j.jchromb.2004.12.030
  53. Matsui, A. J., Takeuchi, T., Yano, K., Muguruma, H., Elgersma, A. V., and Karube, I., "Recognition of Sialic-acid Using Molecularly Imprinted Polymer," Anal. Lett., 28, 2317-2323 (1995). https://doi.org/10.1080/00032719508000375
  54. Hilal, N., and Kochkodan, V. J., "Surface Modified Microfiltration Membranes with Molecularly Recognising Properties," J. Memb. Sci., 213, 97-113 (2003). https://doi.org/10.1016/S0376-7388(02)00516-1
  55. Sellegren, B., "Direct Drug Determination by Selective Sample Enrichment on An Imprinted Polymer," Anal. Chem., 66, 1578-1582 (1994). https://doi.org/10.1021/ac00081a036
  56. Yoshikawa, M., and Izumi, J., "Chiral Recognition Sites Converted from Tetrapeptide Derivatives Adopting Racemates as Print Molecules," Macromol. Biosci., 3(9), 487-498 (2003). https://doi.org/10.1002/mabi.200350016
  57. Kobayashi, T., Wang, H. Y., and Fujii, N., "Molecular Imprinting of Theophylline in Acrylonitrile-acrylic Acid Copolymer Membrane," Chem. Lett., 24(10), 927-928 (1995). https://doi.org/10.1246/cl.1995.927
  58. Cheong, S. H., McNiven, S., Rachkov, A., Levi, R., K. "Testosterone Receptor-binding Mimic Constructed Using Molecular Imprinting," Macromol., 30(5), 1317-1322 (1997). https://doi.org/10.1021/ma961014l
  59. Levi, R., Mcniven, S., Piletsky, S. A., Cheong, S. H., Yano, K., and Karube, I., "Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers," Anal. Chem., 69(11), 2017-2021 (1997). https://doi.org/10.1021/ac960983b
  60. Svenson, J., and Nicholls, I. A., "On the Thermal and Chemical Stability of Molecularly Imprinted Polymers," Anal. Chem. Acta., 435(1), 19-24 (2001). https://doi.org/10.1016/S0003-2670(00)01396-9
  61. Duarte, A. R. C., Casimiro, T., Aguiar-Ricardo, A., Simplicio, A, L., and Duarte, C. M. M., "Supercritical Fluidpolymerisation and Impregnation of Molecularly Imprinted Polymers for Drug Delivery," J. Supercrit. Fluids., 39(1), 102-106 (2006). https://doi.org/10.1016/j.supflu.2006.01.013
  62. Ye, L., Yoshimatsu, K., Kolodziej, D., Francisco, J. D. C., and Dey, E. S., "Preparation of Molecularly Imprinted Polymers Insupercritical Carbon Dioxide," J. Appl. Polym. Sci., 102, 2863-2867 (2006). https://doi.org/10.1002/app.24648
  63. Kobayashi, T., Leong, S. S., and Zhang, Q., "Using Polystyreneco-maleic Acid for Molecularly Imprinted Membranes Prepared in Supercritical Carbon Dioxide," J. Appl. Polym. Sci., 108(2), 757-768 (2008). https://doi.org/10.1002/app.27734
  64. Byun, H. S., and McHugh, M. A., "High Pressure Phase Behavior of Poly [isopropyl acrylate] and Poly[isopropyl methacrylate] in Supercritical Fluid (SCF) Solvent and SCF Solvent + Cosolvent Mixtures," J. Supercrit. Fluids, 41(3), 482- 491 (2007). https://doi.org/10.1016/j.supflu.2006.11.005
  65. Liu, S., Lee, H. Y., Yoon, S. D., Yoo, K. P., and Byun, H. S., "High-pressure Phase Behavior for Poly (dodecyl methacrylate) + Supercritical Solvents + Cosolvents and Carbon Dioxide + Dodecyl Methacrylate Mixture," Ind. Chem. Eng. Res., 48(16), 7821-7827 (2009). https://doi.org/10.1021/ie900598w
  66. Jang, Y. S., Yoon, S. D., and Byun, H. S., "High Pressure Phase Behavior for the Binary Mixture of Pentafluoropropyl Methacrylate and Poly (pentafluoropropyl methacrylate) in Supercritical Carbon Dioxide and Dimethyl Ether," Kor. J. Chem. Eng., 29(3), 413-419 (2012). https://doi.org/10.1007/s11814-011-0188-0
  67. Folie, B., Gregg, C., Luft, G., and Radosz, M., "Phase Equilibria of Poly (ethylene-co-vinyl acetate) Copolymers in Subcritical and Supercritical Ethylene and Ethylene-vinyl Acetate Mixtures," Fluid Phase Equilibria, 120(1), 11-37 (1996). https://doi.org/10.1016/0378-3812(95)02981-8
  68. Byun, H. S., and Lee, D. H., "Phase Behavior of the Poly (neopentyl methacrylate) Plus Supercritical Fluid Solvents Plus Neopentyl Methacrylate System and $CO_2$ + Neopentyl Methacrylate Mixtures at High Pressure," Polym., 48(3), 805- 812 (2007). https://doi.org/10.1016/j.polymer.2006.12.006
  69. Byun, H. S., Youn, Y. N., Yun, Y. H., and Yoon, S. D., "Selective Separation of Aspirin Using Molecularly Imprinted Polymers," Sep. Purif. Technol., 74(1), 144-153 (2010). https://doi.org/10.1016/j.seppur.2010.05.017

피인용 문헌

  1. Review on TNT Disposal vol.19, pp.1, 2016, https://doi.org/10.9766/KIMST.2016.19.1.127
  2. Phase Behavior of Sorbitan Monopalmitate Surfactant in Supercritical Carbon Dioxide vol.19, pp.1, 2013, https://doi.org/10.7464/ksct.2013.19.1.008
  3. 초임계 이산화탄소 염색 및 가공 기술 vol.31, pp.1, 2012, https://doi.org/10.5764/tcf.2019.31.1.48