DOI QR코드

DOI QR Code

Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films

  • Marroquin, Jason (Department of Mechanical Engineering, College of Engineering, Kyung Hee University) ;
  • Kim, H.J. (Ocean Development System Laboratory, Korea Research Institute of Ships and Ocean Engineering) ;
  • Jung, Dong-Ho (Ocean Development System Laboratory, Korea Research Institute of Ships and Ocean Engineering) ;
  • Rhee, Kyong-Yop (Industrial Liaison Research Institute, Department of Mechanical Engineering, Kyung Hee University)
  • Received : 2012.02.12
  • Accepted : 2012.03.19
  • Published : 2012.04.30

Abstract

Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles ($Fe_3O_4$) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying $Fe_3O_4$ content. It was determined that a 1:1 ratio of CNT to $Fe_3O_4$ provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high $Fe_3O_4$ loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.

Keywords

References

  1. Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.
  2. Jin F, Park S. A review of the preparation of carbon nanotubesreinforced polymer composites. Carbon Lett, 12, 57 (2011). http:// dx.doi.org/10.5714/CL.2011.12.2.057.
  3. Kwon J, Kim H. Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci, Part A: Polym Chem, 43, 3973 (2005). http:// dx.doi.org/10.1002/pola.20897.
  4. Wu ZP, Li MM, Hu YY, Li YS, Wang ZX, Yin YH, Chen YS, Zhou X. Electromagnetic interference shielding of carbon nanotube macrofilms. Scripta Mater, 64, 809 (2011). http://dx.doi.org/10.1016/j.scriptamat.2011.01.002.
  5. Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater, 12, 750 (2000). http://dx.doi.org/10.1002/(sici)1521-4095(200005)12:10<750::aid-adma750>3.0.co;2-6.
  6. Ma PC, Siddiqui NA, Marom G, Kim J-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites A, 41, 1345 (2010). http://dx.doi.org/10.1016/j.compositesa.2010.07.003.
  7. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A. Novel materials based on chitosan and cellulose. Polym Int, 60, 875 (2011). http://dx.doi.org/10.1002/pi.3024.
  8. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci, 34, 641 (2009). http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001.
  9. Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 14, 1609 (2002). http://dx.doi. org/10.1002/elan.200290000.
  10. Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H. Electrochemical behavior of l-dopa at single-wall carbon nanotube-modified glassy carbon electrodes. J Electroanal Chem, 569, 47 (2004). http:// dx.doi.org/10.1016/j.jelechem.2004.02.011.
  11. Luo XL, Xu JJ, Wang JL, Chen HY. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun, 2169 (2005). http://dx.doi.org/10.1039/B419197H.
  12. Santos AS, Pereira AC, Durán N, Kubota LT. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube. Electrochim Acta, 52, 215 (2006). http://dx.doi.org/10.1016/j.electacta.2006.04.060.
  13. Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis, 17, 7 (2005). http://dx.doi.org/10.1002/elan.200403113.
  14. Liu Y, Tang J, Chen X, Xin JH. Decoration of carbon nanotubes with chitosan. Carbon, 43, 3178 (2005). http://dx.doi.org/10.1016/j.carbon.2005.06.020.
  15. Tkac J, Whittaker JW, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors Bioelectron, 22, 1820 (2007). http://dx.doi.org/10.1016/j.bios.2006.08.014.
  16. Foygel M, Morris RD, Anez D, French S, Sobolev VL. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B, 71, 104201 (2005). http://dx.doi.org/10.1103/PhysRevB.71.104201.
  17. Wescott JT, Kung P, Maiti A. Conductivity of carbon nanotube polymer composites. Appl Phys Lett, 90, 033116 (2007). http:// dx.doi.org/10.1063/1.2432237.
  18. Lau C, Cooney MJ, Atanassov P. Conductive macroporous composite chitosan−carbon nanotube scaffolds. Langmuir, 24, 7004 (2008). http://dx.doi.org/10.1021/la8005597.
  19. Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6, 3067 (2005). http://dx.doi.org/10.1021/bm050378v.

Cited by

  1. Nanocomposite via Emulsion Polymerization and Investigation of Antioxidant Activity vol.33, pp.1, 2013, https://doi.org/10.1002/adv.21385
  2. Kinetic and thermodynamic studies of methotrexate adsorption on chitosan-modified magnetic multi-walled carbon nanotubes vol.147, pp.12, 2016, https://doi.org/10.1007/s00706-016-1753-3
  3. ) and dechlorination & mineralization of 4-chlorophenol from simulated waste water vol.6, pp.16, 2016, https://doi.org/10.1039/C5RA23372K
  4. -phenylenediamine and its magnetic nanocomposite: Synthesis, characterization and biosensing activity pp.02728397, 2018, https://doi.org/10.1002/pc.24790