DOI QR코드

DOI QR Code

Synthesis and applications of graphene electrodes

  • Shin, Dolly (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Bae, Su-Kang (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Yan, Chao (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Kang, Jun-Mo (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Ryu, Jae-Chul (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Ahn, Jong-Hyun (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Hong, Byung-Hee (Center for Human Interface Nano Technology (HINT) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
  • Received : 2011.09.01
  • Accepted : 2011.12.18
  • Published : 2012.01.31

Abstract

The near explosion of attention given to graphene has attracted many to its research field. As new studies and findings about graphene synthesis, properties, electronic quality control, and possible applications simultaneous burgeon in the scientific community, it is quite hard to grasp the breadth of graphene history. At this stage, graphene's many fascinating qualities have been amply reported and its potential for various electronic applications are increasing, pulling in ever more newcomers to the field of graphene. Thus it has become important as a community to have an equal understanding of how this material was discovered, why it is stirring up the scientific community and what sort of progress has been made and for what purposes. Since the first discovery, the hype has expediently led to near accomplishment of industrial-sized production of graphene. This review covers the progress and development of synthesis and transfer techniques with an emphasis on the most recent technique of chemical vapor deposition, and explores the potential applications of graphene that are made possible with the improved synthesis and transfer.

Keywords

References

  1. Peierls RE. Quelques proprieties typiques des corpses solides. Ann I H Poincare, 5, 177 (1935).
  2. Landau LD. Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion, 11, 26 (1937).
  3. Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/ science.1102896.
  5. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102.
  6. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.
  7. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 100, 016602 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.016602.
  8. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.
  9. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.
  10. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). http://dx.doi.org/10.1002/adma.201001068.
  11. Zhang Y, Small JP, Pontius WV, Kim P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett, 86, 073104 (2005). http://dx.doi.org/10.1063/1.1862334.
  12. Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). http://dx.doi.org/10.1126/science.1158877.
  13. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58.
  14. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http://dx.doi.org/10.1038/nature06016.
  15. Park S, Lee KS, Bozoklu G, Cai W, Nguyen SBT, Ruoff RS. Graphene oxide papers modified by divalent ions--enhancing mechanical properties via chemical cross-linking. ACS Nano, 2, 572 (2008). http://dx.doi.org/10.1021/nn700349a.
  16. Kumar A, Reddy ALM, Mukherjee A, Dubey M, Zhan X, Singh N, Ci L, Billups WE, Nagurny J, Mital G, Ajayan PM. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. ACS Nano, 5, 4345 (2011). http://dx.doi.org/10.1021/nn201527p.
  17. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48, 2118 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001.
  18. Murugan AV, Muraliganth T, Manthiram A. Rapid, facile microwave- solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater, 21, 5004 (2009). http://dx.doi.org/10.1021/cm902413c.
  19. Long J, Fang M, Chen G. Microwave-assisted rapid synthesis of water-soluble graphene. J Mater Chem, 21, 10421 (2011). http://dx.doi.org/10.1039/c0jm04564k.
  20. Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever JM, Sauvage-Simkin M, Themlin JM. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J Appl Phys, 92, 2479 (2002). http://dx.doi.org/10.1063/1.1498962.
  21. Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys Rev B, 58, 16396 (1998). http://dx.doi.org/10.1103/PhysRevB.58.16396.
  22. Tung RT, Gibson JM, Poate JM. Formation of ultrathin dingle- crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures. Phys Rev Lett, 50, 429 (1983). http://dx.doi.org/10.1103/PhysRevLett.50.429.
  23. Edman L, Sundqvist B, McRae E, Litvin-Staszewska E. Electrical resistivity of single-crystal graphite under pressure: an anisotropic three-dimensional semimetal. Phys Rev B, 57, 6227 (1998). http://dx.doi.org/10.1103/PhysRevB.57.6227.
  24. Binns C, Baker SH, Demangeat C, Parlebas JC. Growth, electronic, magnetic and spectroscopic properties of transition metals on graphite. Surf Sci Rep, 34, 107 (1999). http://dx.doi.org/10.1016/S0167-5729(99)00004-7.
  25. Kopelevich Y, Esquinazi P, Torres JHS, Moehlecke S. Ferromagnetic- and superconducting-like behavior of graphite. J Low Temp Phys, 119, 691 (2000). http://dx.doi.org/10.1023/A:1004637814008.
  26. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Alexei N, Conrad MEH, First PN, De Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f.
  27. Lee DS, Riedl C, Krauss B, Klitzing KV, Starke U, Smet JH. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett, 8, 4320 (2008). http://dx.doi.org/10.1021/nl802156w.
  28. Unarunotai S, Murata Y, Chialvo CE, Kim HS, MacLaren S, Mason N, Petrov I, Rogers JA. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl Phys Lett, 95, 202101 (2009). http://dx.doi.org/10.1063/1.3263942.
  29. Caldwell JD, Anderson TJ, Culbertson JC, Jernigan GG, Hobart KD, Kub FJ, Tadjer MJ, Tedesco JL, Hite JK, Mastro MA, Myers- Ward RL, Eddy Jr CR, Campbell PM, Gaskill DK. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano, 4, 1108 (2010). http://dx.doi.org/10.1021/nn901585p.
  30. Unarunotai S, Koepke JC, Tsai CL, Du F, Chialvo CE, Murata Y, Haasch R, Petrov I, Mason N, Shim M, Lyding J, Rogers JA. Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano, 4, 5591 (2010). http://dx.doi.org/10.1021/nn101896a.
  31. Vaari J, Lahtinen J, Hautojarvi P. The adsorption and decomposition of acetylene on clean and K-covered Co(0001). Catal Lett, 44, 43 (1997). http://dx.doi.org/10.1023/A:1018972924563.
  32. Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S. Highly oriented monolayer graphite formation on Pt(1 1 1) by a supersonic methane beam. Surf Sci, 560, 183 (2004). http://dx.doi.org/10.1016/j.susc.2004.04.039.
  33. Starr DE, Pazhetnov EM, Stadnichenko AI, Boronin AI, Shaikhutdinov SK. Carbon films grown on Pt(1 1 1) as supports for model gold catalysts. Surf Sci, 600, 2688 (2006). http://dx.doi.org/10.1016/j.susc.2006.04.035.
  34. Gall NR, Rut'kov EV, Tontegode AY. Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: adsorption, desorption, and dissolution. Phys Solid State, 46, 371 (2004). http://dx.doi.org/10.1134/1.1649439.
  35. Coraux J, N'Diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano Lett, 8, 565 (2008). http://dx.doi.org/10.1021/nl0728874.
  36. Vazquez De Parga AL, Calleja F, Borca B, Passeggi MCG, Hinarejos JJ, Guinea F, Miranda R. Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett, 100, 056807 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.056807.
  37. Marchini S, Gunther S, Wintterlin J. Scanning tunneling microscopy of graphene on Ru(0001). Phys Rev B, 76, 075429 (2007). http://dx.doi.org/10.1103/PhysRevB.76.075429.
  38. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.
  39. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.
  40. Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett, 98, 091502 (2011). http://dx.doi.org/10.1063/1.3561747.
  41. Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M, Schaefer J, Kong J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res, 2, 509 (2009). http://dx.doi.org/10.1007/s12274-009-9059-y.
  42. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  43. Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.
  44. Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 10, 4328 (2010). http://dx.doi.org/10.1021/nl101629g.
  45. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.
  46. Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). http://dx.doi.org/10.1021/nl102355e.
  47. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colomba L, Ruoff RS. Transfer of large-area graphene films for high- performance transparent conductive electrodes. Nano Lett, 9, 4359 (2009). http://dx.doi.org/10.1021/nl902623y.
  48. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401.
  49. Cancado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190 (2011). http://dx.doi. org/10.1021/nl201432g.
  50. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett, 10, 751 (2010). http://dx.doi.org/10.1021/nl904286r.
  51. Molitor F, Graf D, Stampfer C, Ihn T, Ensslin K. Raman imaging and electronic properties of graphene. Adv Solid State Phys, 47, 171 (2008). http://dx.doi.org/10.1007/978-3-540-74325-5_14.
  52. Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 10, 490 (2010). http://dx.doi.org/10.1021/nl903272n.
  53. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  54. Zhang W, Wu P, Li Z, Yang J. First-principles thermodynamics of graphene growth on Cu surfaces. J Phys Chem C, 115, 17782 (2011). http://dx.doi.org/10.1021/jp2006827.
  55. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc, 133, 2816 (2011). http://dx.doi.org/10.1021/ja109793s.
  56. Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5, 6069 (2011). http://dx.doi.org/10.1021/nn201978y.
  57. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater, 10, 443 (2011). http://dx.doi.org/10.1038/nmat3010.
  58. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solid carbon sources. Nature, 468, 549 (2010). http://dx.doi.org/10.1038/nature09579.
  59. Kondo D, Sato S, Yagi K, Harada N, Sato M, Nihei M, Yokoyama N. Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes. Appl Phys Express, 3, 025102 (2010). http://dx.doi.org/10.1143/apex.3.025102.
  60. Yao Y, Li Z, Lin Z, Moon KS, Agar J, Wong C. Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J Phys Chem C, 115, 5232 (2011). http://dx.doi.org/10.1143/apex.3.025102.
  61. Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda KI, Mizuno S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano, 4, 7407 (2010). http://dx.doi.org/10.1021/nn102519b.
  62. Sukhdeo D. Large-area chemical vapor deposition of graphene over thin films of cobalt. The 2009 NNIN REU Research Accomplishments, National Nanotechnology Infrastructure Network, 100 (2009).
  63. Liu X, Fu L, Liu N, Gao T, Zhang Y, Liao L, Liu Z. Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C, 115, 11976 (2011). http://dx.doi.org/10.1021/jp202933u.
  64. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 4, 43 (2010). http://dx.doi.org/10.1021/nn900728d.
  65. Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater, 20, 2893 (2010). http://dx.doi.org/10.1002/adfm.201000900.
  66. Sun T, Wang ZL, Shi ZJ, Ran GZ, Xu WJ, Wang ZY, Li YZ, Dai L, Qin GG. Multilayered graphene used as anode of organic light emitting devices. Appl Phys Lett, 96, 133301 (2010). http://dx.doi. org/10.1063/1.3373855.
  67. Jo G, Choe M, Cho CY, Kim JH, Park W, Lee S, Hong WK, Kim TW, Park SJ, Hong BH, Kahng YH, Lee T. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 21, 175201 (2010). http://dx.doi.org/10.1088/0957-4484/21/17/175201.
  68. Wang Y, Tong SW, Xu XF, Ozyilmaz B, Loh KP. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater, 23, 1514 (2011). http://dx.doi.org/10.1002/adma.201003673.
  69. Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2008). http://dx.doi.org/10.1021/nl072838r.
  70. Ihm K, Lim JT, Lee KJ, Kwon JW, Kang TH, Chung S, Bae S, Kim JH, Hong BH, Yeom GY. Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Appl Phys Lett, 97, 0321133 (2010). http://dx.doi.org/10.1063/1.3464319.
  71. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 4, 2865 (2010). http://dx.doi.org/10.1021/nn901587x.
  72. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 4, 3169 (2010). http://dx.doi.org/10.1021/nn100551j.
  73. Jang S, Jang H, Lee Y, Suh D, Baik S, Hee Hong B, Ahn JH. Flexible, transparent single-walled carbon nanotube transistors with grapheme electrodes. Nanotechnology, 21, 425201 (2010). http://dx.doi.org/10.1088/0957-4484/21/42/425201.
  74. Lee WH, Park J, Sim SH, Jo SB, Kim KS, Hong BH, Cho K. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv Mater, 23, 1752 (2011). http://dx.doi.org/10.1002/adma.201004099.
  75. Gundlach DJ, Zhou L, Nichols JA, Jackson TN, Necliudov PV, Shur MS. An experimental study of contact effects in organic thin film transistors. J Appl Phys, 100, 024509 (2006). http://dx.doi.org/10.1063/1.2215132.
  76. Necliudov PV, Shur MS, Gundlach DJ, Jackson TN. Contact resistance extraction in pentacene thin film transistors. Solid- State Electron, 47, 259 (2003). http://dx.doi.org/10.1016/s0038-1101(02)00204-6.
  77. Blanchet GB, Fincher CR, Lefenfeld M, Rogers JA. Contact resistance in organic thin film transistors. Appl Phys Lett, 84, 296 (2004). http://dx.doi.org/10.1063/1.1639937.
  78. Becerril HA, Stoltenberg RM, Tang ML, Roberts ME, Liu Z, Chen Y, Kim DH, Lee BL, Lee S, Bao Z. Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors. ACS Nano, 4, 6343 (2010). http://dx.doi.org/10.1021/nn101369j.
  79. Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 10, 3464 (2010). http://dx.doi.org/10.1021/nl101559n.
  80. Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 11, 4642 (2011). http://dx.doi.org/10.1021/nl202134z.
  81. Kim RH, Bae MH, Kim DG, Cheng H, Kim BH, Kim DH, Li M, Wu J, Du F, Kim HS, Kim S, Estrada D, Hong SW, Huang Y, Pop E, Rogers JA. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett, 11, 3881 (2011). http://dx.doi.org/10.1021/nl202000u.
  82. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Supercapacitor devices based on graphene materials. J Phys Chem C, 113, 13103 (2009). http://dx.doi.org/10.1021/jp902214f.
  83. Stoller MD, Park S, Yanwu Z, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y.
  84. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R, Ajayan PM. Ultrathin planar graphene supercapacitors. Nano Lett, 11, 1423 (2011). http://dx.doi.org/10.1021/nl200225j.
  85. Zhu SE, Shabani R, Rho J, Kim Y, Hong BH, Ahn JH, Cho HJ. Graphene-based bimorph microactuators. Nano Lett, 11, 977 (2011). http://dx.doi.org/10.1021/nl103618e.
  86. Rogers GW, Liu JZ. Graphene actuators: quantum-mechanical and electrostatic double-layer effects. J Am Chem Soc, 133, 10858 (2011). http://dx.doi.org/10.1021/ja201887r.
  87. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G. Super- elastic graphene ripples for flexible strain sensors. ACS Nano, 5, 3645 (2011). http://dx.doi.org/10.1021/nn103523t.
  88. Cho J, Gao L, Tian J, Cao H, Wu W, Yu Q, Yitamben EN, Fisher B, Guest JR, Chen YP, Guisinger NP. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. ACS Nano, 5, 3607 (2011). http://dx.doi.org/10.1021/nn103338g.
  89. Reddy KM, Gledhill AD, Chen CH, Drexler JM, Padture NP. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl Phys Lett, 98, 113117 (2011). http://dx.doi.org/10.1063/1.3569143.
  90. Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5, 1321 (2011). http://dx.doi.org/10.1021/nn103028d.
  91. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi.org/10.1021/nl801457b.
  92. Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST. Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater, 22, 4759 (2010). http://dx.doi.org/10.1002/adma.201000960.
  93. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PLR, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano, 5, 4670 (2011). http://dx.doi.org/10.1021/nn200500h.
  94. Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett, 8, 4469 (2008). http://dx.doi.org/10.1021/nl802412n.

Cited by

  1. Synthesis of Monolayer Graphene Having a Negligible Amount of Wrinkles by Stress Relaxation vol.13, pp.6, 2013, https://doi.org/10.1021/nl4005578
  2. Dielectrics on Graphene vol.5, pp.22, 2013, https://doi.org/10.1021/am4039807
  3. Graphene Based Nanogenerator for Energy Harvesting vol.52, pp.6S, 2013, https://doi.org/10.7567/JJAP.52.06GA02
  4. Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes vol.15, pp.1, 2014, https://doi.org/10.5714/CL.2014.15.1.050
  5. Thermal properties in strong hydrogen bonding systems composed of poly(vinyl alcohol), polyethyleneimine, and graphene oxide vol.15, pp.4, 2014, https://doi.org/10.5714/CL.2014.15.4.282
  6. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer vol.16, pp.9, 2014, https://doi.org/10.1039/c3cp53900h
  7. Production of Pt nanoparticles-supported chelating group-modified graphene for direct methanol fuel cells vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1662-1
  8. Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1663-0
  9. Preparation of polymeric modifier-attached graphene-supported bimetallic Pt–Pd nanocomposites, and their electrochemical properties as electro-catalysts vol.40, pp.8, 2014, https://doi.org/10.1007/s11164-013-1127-y
  10. Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber-graphene nanocomposites vol.55, pp.11, 2015, https://doi.org/10.1002/pen.24131
  11. Simplified production of graphene oxide assisted by high shear exfoliation of graphite with controlled oxidation vol.42, pp.6, 2018, https://doi.org/10.1039/C7NJ04911K
  12. Single layer graphene: an alternative electrode material for ferroelectric liquid crystal based displays vol.45, pp.11, 2018, https://doi.org/10.1080/02678292.2018.1461264
  13. A Simple Method of Fabricating Graphene-Polymer Conductive Films vol.33, pp.1, 2018, https://doi.org/10.3139/217.3418