DOI QR코드

DOI QR Code

Influence of the Entrance and Exit Lengths on the Natural Convection Heat Transfer of a Cylinder in a Duct

도관내 원형관의 자연대류 열전달에서 입구 및 출구 길이 효과

  • Lim, Chul-Kyu (Department of Nuclear and Energy Engineering, Institute for Nuclear Science and Technology, Jeju National University) ;
  • Chung, Bum-Jin (Department of Nuclear and Energy Engineering, Institute for Nuclear Science and Technology, Jeju National University)
  • 임철규 (제주대학교 에너지공학과) ;
  • 정범진 (제주대학교 에너지공학과)
  • Received : 2012.02.13
  • Accepted : 2012.03.12
  • Published : 2012.03.31

Abstract

This work investigated the influence of the chimney dimensions(exit and entrance length, and diameter) on the heat transfer of a vertical cylinder in a duct. The measured mass transfer rates for the natural convection of vertical cylinder in a duct were presented for Prandlt number 2,094, Rayleigh number in the range of $4.55{\times}10^9$, $5.79{\times}10^{10}$, and $1.69{\times}10^{11}$. Experiments were performed using a copper sulfate electroplating system to simulate heat transfer based upon the analogy concept. The diameter of the duct was varied from 0.06 m to 0.14 m, and the heights from 0.30 m to 1.10 m. Nusselt numbers measured at open channel condition agreed well with the existing laminar heat transfer correlations for vertical plate developed by Le Fevre. The increase of the exit length enhanced the heat transfer up to a certain duct height but further increase does not affects the heat transfer. The heat transfer decreased with increasing the entrance length up to a certain duct height and was constant at further increase. The Nusselt number decreased with increasing the diameter of duct, until Nusselt number becomes similar to that at open channel beyond a certain diameter.

굴뚝내 수직 원형관의 자연대류에서 굴뚝의 입구길이, 출구길이, 그리고 굴뚝의 직경에 따른 열전달 변화를 실험적으로 연구하였다. 상사성을 이용하여 열전달 실험 대신 물질전달 실험을 수행하였다. 직경 0.054 m, 높이 0.03, 0.07, 0.10 m의 원형관에 대하여 굴뚝의 직경을 0.06 m에서 0.14 m까지, 높이를 0.30 m에서 1.10 m까지 변화시켰다. 이는 Pr 수 2,094, $Ra_L$$4.55{\times}10^9$, $5.79{\times}10^{10}$, 그리고 $1.69{\times}10^{11}$에 해당한다. 굴뚝이 없을 때, 수직 원형관의 열전달은 Le Ferve의 수직평판에 대한 층류 자연대류 상관식과 일치하였다. 출구길이를 증가시키며 실험한 결과, 열전달은 증가하다가 특정 출구길이 이상에서는 일정해 졌다. 반면, 입구길이를 증가시킬 때는 열전달은 감소하다가 특정 입구길이 이상에서는 일정해졌다. 굴뚝효과로 증가된 열전달은 굴뚝의 직경을 증가시킬수록 감소하다가 굴뚝이 없을 때와 같아졌다.

Keywords

References

  1. S. E. Haaland and E. M. Sparrow, Solutions for the channel plume and the parallel-walled chimney, Numerical Heat Transfer, 1983, 6, 155-172.
  2. Assunta Andreozzi, Bernardo Buonomo, Oronzio Manca, Thermal management of a symmetrically heated channel-chimney system, International Journal of Thermal Sciences, 2009, 48, 475-487. https://doi.org/10.1016/j.ijthermalsci.2008.03.017
  3. Assunta Andreozzi, Antonio Campo, and Oronzio Manca., Compounded natural convection enhancement in a vertical parallel-plate channel, International Journal of Thermal Sciences, 2008, 47, 742-748. https://doi.org/10.1016/j.ijthermalsci.2007.06.013
  4. T. S. Fisher and K. E. Torrance, Experiments on chimneyenhanced free convection, Journal of Heat Transfer, 1999, 121, 603-609. https://doi.org/10.1115/1.2826022
  5. S. Kazansky, V. Dubovsky, G. Ziskind, R. Letan, Chimney-enhanced natural convection from a vertical plate: experiments and numerical simulations, Int. J. Heat Mass Transfer, 46, 497-512.
  6. A. Auletta, O. Manca, B. Morrone, V. Naso, Heat transfer enhancement by the chimney effect in a vertical isoflux channel, Int. J. Heat Mass Transfer, 2001, 44, 4345-4357. https://doi.org/10.1016/S0017-9310(01)00064-3
  7. Assunta Andreozzi, Bernardo Buonomo, Oronzio Manca, Numerical study of natural convection in vertical channels with adiabatic extensions downstream, Numerical Heat Transfer, 2005, 47, 741-762. https://doi.org/10.1080/10407780590916904
  8. Assunta Andreozzi, Oronzio Manca, Thermal and fluid dynamic behavior of symmetrically heated vertical channels with auxiliary plate, Int. J. Heat Mass Transfer, 2001, 22, 424-432.
  9. Antonio Auletta and Oronzio Manca, Heat and fluid flow resulting from the chimney effect in a symmetrically heated vertical channel with adiabatic extensions, International Journal of Thermal Sciences, 2002, 41, 1101-1111. https://doi.org/10.1016/S1290-0729(02)01396-0
  10. A. Campo, O. Manca, and B. Morrone, Natural convection in vertical, parallel-plate channels with appended unheated entrances, International Journal of Numerical Methods for Heat and Fluid Flow, 2005, 15, 183-204. https://doi.org/10.1108/09615530510578447
  11. R. A. Wirtz and T. Haag, Effect of an unheated entry on natural convection between vertical parallel plates, American Society of Mechanical Engineers, 1985, 17, 1-8.
  12. A. Campo, O. Manca, and B. Morrone, Numerical analysis of partially heated vertical parallel plates in natural convective cooling, Numerical Heat Transfer, 1999, 36, 129-151. https://doi.org/10.1080/104077899274813
  13. K. T. Lee, Natural convection in vertical parallel plates with an unheated entry or unheated exit, Numerical Heat Transfer, 1994, 25, 477-493. https://doi.org/10.1080/10407789408955961
  14. Y. Asako, H. Nakamura, and M. Faghri, Natural convection in a vertical heated tube attached to a thermally insulated chimney of a different diameter, Trans. ASME, 1990, 112, 790-793. https://doi.org/10.1115/1.2910458
  15. Bejan, A., 1994, Convective Heat Transfer, 2nd ed., John Wiley & Sons, INC, New York, 466-514.
  16. Bejan, A., 2003, Convective Heat Transfer, 3rd ed., John Wiley & Sons, INC, New York, 207-222.
  17. Elenbass, W, The Dissipation of Heat by Free Convection from Vertical and Horizontal Cylinders, Journal of Applied Physics, 1948, 19, 1148-1154. https://doi.org/10.1063/1.1715035
  18. Le Fevre, E.J., Laminar free convection from a vertical plane surface", 9th International Congress on Applied Mechanics, Brussels, 1956, 1-168.
  19. Levich. V.G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J.
  20. Selman, J.R., Tobias, C. W., 1978, Mass Transfer Measurement by the Limiting Current Technique, Adv. Chem. Eng. 10, pp. 211-318. https://doi.org/10.1016/S0065-2377(08)60134-9
  21. Fenech, E. J. and Tobias, C. W., "Mass transfer by free convection at horizontal electrodes", Electrochimica Acta, 1960, 2, 311-325. https://doi.org/10.1016/0013-4686(60)80027-8
  22. Ko, S.H., Moon, D.W., Chung, B.J., Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept, Nuclear engineering and Technology, 2006, 38, 251-258.
  23. Kang, K.U., Chung, B.J., The effects of the anode size and position on the limiting currents of natural convection mass transfer experiments in a vertical pipe, Transaction of the KSME(B), 2010, 34(1), 1-8.
  24. Ko, B. J and Chung, B. J., Study on the Laminar Mixed Convection of Developing Flow in a Vertical Pipe, Trans. of the KSME(B), 2010, 34(5), 481-489.
  25. Kang, G.U., Chung, B.J., The experimental study on transition criteria of natural convection inside a vertical pipe, International Communication of Heat and Mass transfer, 2011, 37(8), 1057-1063.
  26. Heo, J. H. and Chung, B. J., Visualization of Natural Convection Heat Transfer on a Horizontal Cylinder using the Copper Electroplating System, Trans. of the KSME(B), 2011, 35(1), 43-51.
  27. Lim, C. K., Heo, J. H. and Chung, B. J., Natural Convection Heat Transfer on Inclined Plates, Trans. of the KSME(B), 2011, 35(7), 701-708.
  28. Chae, M. S. and Chung, B. J., The Effect of Pitch-to- Diameter on Natural Convection Heat Transfer of Two Vertically Aligned Horizontal Cylinders, Chemical Engineering Science, 2011, 66, 5321-5329. https://doi.org/10.1016/j.ces.2011.07.021

Cited by

  1. Influence of chimney width on the natural convection cooling of a vertical finned plate vol.293, 2015, https://doi.org/10.1016/j.nucengdes.2015.08.012
  2. Heat load imposed on reactor vessels during in-vessel retention of core melts vol.308, 2016, https://doi.org/10.1016/j.nucengdes.2016.08.010