DOI QR코드

DOI QR Code

Dual Inoculation Response of Soybean with Rhizobium And Mycorrhiza

콩에 대한 근류균과 균근균의 혼합 접종효과

  • Received : 2012.03.20
  • Accepted : 2012.06.13
  • Published : 2012.06.30

Abstract

The dual inoculation response of soybean with rhizobium and mycorrhiza was examined in pot vermiculite and field soils. In order to select a symbiotically compatible mycorrhiza with Bradyrhizobium japonicum, a highly germinating spore among 60 strains from 32 upland soils in southern part of Korea was obtained in Acaulospora sp., Gigaspora sp. and Glomus sp., respectively. As a result of dual inoculation of Glycin max cv. Dajangkong and Eunhakong both with $1{\times}10^8$cells of B. japonicum YCK 213 and 10 spores of each mycorrhiza in vermiculite pot, only Glomus sp. treatment together with the rhizobium showed significant increase ($P{\leqq}0.05$) both in shoot dry wt and nodule mass of not Eunhakong but Dajangkong. In red-yellow soils with pH 5.2($1:5H_2O$) and 203 mg of Lancaster P per kg of soil, in which $10^3$ cells of B. japonicum and $10{\pm}0.2$ spores of mycorrhizae per gram of soil were naturalized, grain yield of G. max cv. Dajangkong was increased to 3.9% by dual inoculation both of $4.8{\times}10^6$cells of B. japonicum and 10 spores of mycorrhizae per two seeds under condition applied with 30 kg $P_2O_5$ and 34 kg $K_2O$ per hectare compared to conventionally fertilized plot (2.75 MT $ha^{-1}$) added with 30 kg N $ha^{-1}$. However, there was not significant.

콩재배시 질소와 인산질 양분의 공급원으로서 근류균과 균근균의 접종효과를 질석충진 포트와 포장토양에서 검토하였다. 영남지역 32개 밭토양에서 포자발아력이 우수한 균근균 Acaulospora sp., Gigaspora sp., Glomus sp. 3종을 분리하여 각각의 포자 10개를 질석으로 충진한 포트에 $1{\times}10^8$ cells의 근류균 Bradyrhizobium japonicum YCK 213과 함께 다장콩과 은하콩에 접종했을 때 콩의 착협기 지상부 건물중과 뿌리혹무게는 다장콩의 Glomus sp. 접종구에서만 유의적인 ($P{\leqq}0.05$) 증가를 보였다. 이 Glomus sp.를 pH 5.2, 유효인산 464 mg $kg^{-1}$, 토착 B. japonicum $1{\times}10^3$ cells, 그리고 균근균 포자가 $10{\pm}0.2$개 분포하는 적황색토에서 인산과 칼리만 시용하고 질소를 결재한 상태로 $4.8{\times}10^6$ cells의 B. japonicum YCK 213과 10개의 Glomus 포자를 다장콩 2립에 접종한 결과, 콩의 수량은 질소 3 - 인산 ($P_2O_5$) 3 - 칼리 ($K_2O$) 3.4 kg $10a^{-1}$의 관행시비구(275.2 kg $10a^{-1}$)에 비해 유의적으로 증가하지는 않았지만 절대수량으로 볼 때 근류균 단독접종구는 2.4%, 근류균과 균근균 혼합접종구에서는 3.9% 증가되었다.

Keywords

References

  1. Arumugam, R., S. Rajasekeran, and S.M. 2010. Response of arbuscular mycorrhizal fungi and Rhizobium inoculation on growth and chlorophyll content of Vigna unguiculata (L) Walp Var. Pusa 151. J. Appl. Sci. Environ. Manage. 14:113-115.
  2. Bethlenfalvay, G.J, M.S. Brown, and A.E. Stafford. 1985. Glycine-Glomus-Rhizabium symbiosis, II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol. 79:1054-1058. https://doi.org/10.1104/pp.79.4.1054
  3. Bolan, N.S. and L.K. Abbott. 1983. Seasonal variation in infectivity of vesicular-arbuscular mycorrhizal fungi in relation to plant response to applied phosphorus. Australian Journal of Soil Research 21:208-210.
  4. Broughton, W.J. and M.J. Dilworth. 1971. Control of leghaemoglobin synthesis in snake bean. Biochem. J. 125:1075-1080.
  5. Caetano-Anolles, G. and P.M. Gresshoff. 1990. Early induction of feed-back regulatory responses governing nodulation in soybean. Plant Sci. 71:69-81. https://doi.org/10.1016/0168-9452(90)90069-Z
  6. Cho, J.Y., Y.J. Kim, S.Y. Jin, S.G. Kang, H.L. Kim, and B.K. Sohn. 2004. Mycorrhizal root infection and growth of cucumber and tomato plants by the inoculated with Glomus sp. in solid medium culture. Korean J. Soil Sci. Fert. 37:341-349.
  7. Clarke, C. and B. Mosse. 1981. Plant growth response to vesicular-arbuscular mycorrhizae. Field inoculation response of barley at two soil P levels. New Phytol. 87:695-703. https://doi.org/10.1111/j.1469-8137.1981.tb01704.x
  8. Cluett, H.C. and D.H. Boucher. 1984. Indirect mutualism of the legume-Rhizobium mycorrhizal fungus interaction. Oecologia 59:405-408.
  9. Demezas D.H. and P.J. Bottomly. 1984. Identification of two-dominant serotypes of Rhizobium trifolii in root nodule of uninoculated field-grown subclover. Soil Sci. Soc. Am. J. 48:1067-1071. https://doi.org/10.2136/sssaj1984.03615995004800050023x
  10. Gerdemann, T.W. and T.M. Nicolson. 1963. Spore of mycorrhizal Endogone species extracted form soil by wet sieving and decanting. Trans. Br. Myxol. Soc. 46:235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
  11. Gutschink, V.P. 1980. Energy flow in the nitrogen cycle, especially in fixation. In. Nitrogen Fixation Vol. 1 W.E. Newton and W.H. Orme-Johnson, Eds. p.17-27. University Park Press. Baltimore.
  12. Jalaluddin, M. 2005. Effect of inoculation with VAM-fungi and Bradyrhizobium on growth and yield of soybean in Sindh. Pak. J. Bot. 37:169-173.
  13. Kang, U.G. 1998. Symbiotic potential of Bradyrhizobium japonicum indigenous to arable land in southern parts of Korea. Korean J. Agricultural Chem. Biotechnol. 41:247-252.
  14. Kang, U.G., H.S. Ha, K.B. Park, S.K. Lee, D.K. Lim, and M.S. Yang. 1996. Serological approach for selection of Bradyrhizobium japonicum strain with superior symbiotic effectiveness. Korean J. Soil Sci. Fert. 29:165-172.
  15. Kang, U.G., H.M. Park, Y.T. Jung, K.B. Park, and H.S. Ha. 1999. Host affinities and serological distribution of Bradyrhizobium japonicum indigenous to Korean upland soils. Korean J. Soil Sci. Fert. 32:62-67.
  16. Kang, U.G., J.H. Choi, J.S. Lee, and Y.T. Jung. 1991. Studies on the development of acid tolerant and superior nitrogen fixation symbionts for pasture on hilly land. III. Inoculation effect of R. meliloti "YA03" to afalfa on hilly acid soil. Korean J. Soil Sci. Fert. 24:219-224.
  17. Kang, U.G., P. Somasegaran, H.H. Hoben, and B.B. Bohlool. 1991. Symbiotic potential, competitiveness, and serological properties of Bradyrhizobium japonicum indigenous to Korean soils. Appl. Environ. Microbiol. 57:1037-1045.
  18. Koske, R.E. and J.N. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizae. Mycol. Res. 92:486-505. https://doi.org/10.1016/S0953-7562(89)80195-9
  19. Lee, S.S., A.H. Eom, and S.K. Lee. 1994. A study on the production of arbuscular mycorrhizal fungal spores by using the commercial fertilizers and the pot culture techniques. Korean J. Mycology 22:172-183.
  20. Mosse B. 1973. Advances in the study of vesicular arbuscular mycorrhiza. Ann. Rev. Phytopathol. 11:171-196. https://doi.org/10.1146/annurev.py.11.090173.001131
  21. Park, H.M., H.W. Kang, U.G. Kang, K.B. Park, S.S. Lee, and S.D. Song. 1999. Effects of arbuscular mycorrhiza inoculation and phosphorus application on early growth of hot pepper(Capsicum annum L.). Korean J. Soil Sci. Fert. 32:68-75.
  22. Park, H.M., M.H. Nam, H.W. Kang, J.S. Lee, J.Y. Ko, U.G. Kang, and K.B. Park. 1999. Density of arbuscular mycorrhizal spore of plastic film house soil in Yeongnam area and characteristics of AMF in vitro. Korean J. Soil Sci. Fert. 32:203-209.
  23. RDA, 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, RDA, Korea.
  24. RDA. 2003. Standard of analysis and survey for agricultural research. Rural Development Administration. Suwon. Korea.
  25. Read D.J., H.K. Koucheki, and J. Hodgson. 1976. Vesiculararbuscular mycorrhiza in native vegetation system. New Phytol. 77:641-653. https://doi.org/10.1111/j.1469-8137.1976.tb04657.x
  26. Rhodes, L.H. and J.W. Gerdemann. 1980. Nutrient translocation in vesiculr-arbuscular mycorrhizae. In CB Cook, Pw Pappas, ED Rudolph, eds, Cellular Interactions in Symbiosis and Parasitism. Ohio State University Press, Columbus, p. 173-195.
  27. Sainz, M.J. and J. Arines. 1988. P Absorbed from soil by mycorrhizal red clover plants as affected by soluble P fertilization. Soil Biol. Biochem. 20:61-67. https://doi.org/10.1016/0038-0717(88)90127-7
  28. Schenck, N.C. and Y. Perez. 1987. Manual for the identification of VA mycorrhizal fungi. 1st (ed.) Gainsville. Florida.
  29. Sohn, B.K., W.M. Yang, and K.S. Kim. 1992. Studies on the indigenous Vesicular-Arbuscular Mycorrhizal Fungi (VAMF) in horticultural crops grown under greenhouse. III. Effects of the indigenous VAMF inoculation on the early growth and the subsequent growth after transplanting of greenhouse grown crops. Korean J. Soil Sci. Fert. 25:99-107.
  30. Somasegaran P. 1993. Abridged catalogue of rhizobia from the collection of the NifTAL Microbiological Resource Center. In Somasegaran, P. (ed.) Paia, Hawaii, USA.
  31. Trappe, J.M. 1982. Synoptic keys to the genera and species of zygomy-cetous mycorrhizal fungi. Phyropathology 72:1102- 1107.
  32. Weaver, R.W. and L.R. Frederick. 1974. Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. Field studies. Agron. J. 66:233-236 https://doi.org/10.2134/agronj1974.00021962006600020015x
  33. Xie, Z.P., C. Staehelin, H. Vierheilig, A. Wiemken, S. Jabbouri, W.J. Broughton, R. Vogeli-Lange, and T. Boller. 1995. Phizobial nodulation factors stimulate mycorrhizal coloization of nodulating and nonnodulating soybeans. Plant Physiol. 108:1519-1525.

Cited by

  1. Impacts of Cropping Systems on the Distribution of Soil Microorganisms in Mid-mountainous Paddy vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.480