DOI QR코드

DOI QR Code

Comparative Study and Electrochemical Properties of LiFePO4F Synthesized by Different Routes

  • Huang, Bin (College of Chemistry and Chemical Engineering, Central South University) ;
  • Liu, Suqin (College of Chemistry and Chemical Engineering, Central South University) ;
  • Li, Hongliang (College of Chemistry and Chemical Engineering, Central South University) ;
  • Zhuang, Shuxin (College of Chemistry and Chemical Engineering, Central South University) ;
  • Fang, Dong (College of Chemistry and Chemical Engineering, Central South University)
  • 투고 : 2012.02.08
  • 심사 : 2012.04.16
  • 발행 : 2012.07.20

초록

To improve the performance of $LiFePO_4F$, a novel sol-gel process is developed. For comparison, ceramic process is also implemented. From X-ray diffraction results we know that each sample adopts a triclinic $P{\bar{1}}$ space group, and they are isostructural with amblygonite and tavorite. The scanning electron microscope images show that the homogeneous grains with the dimension of 300-500 nm is obtained by the sol-gel process; meanwhile the sample particles obtained by ceramic process are as big as 1000-3000 nm. By galvanostatic tests and at electrochemical impedance spectroscopy method, the sample obtained by sol-gel process presents better electrochemical properties than the one obtained by ceramic process.

키워드

참고문헌

  1. Ramesh, T. N.; Lee, K. T.; Ellis, B. L.; Nazar, L. F. Electrochem. Solid-State Lett. 2010, 13, A43. https://doi.org/10.1149/1.3298353
  2. Recham, N.; Chotard, J. N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J. M. Nat. Mater. 2009, 9, 68-74.
  3. Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2003, 150, A1394. https://doi.org/10.1149/1.1609998
  4. Barpanda, P.; Chotard, J. N.; Delacourt, C.; Reynaud, M.; Filinchuk, Y.; Armand, M.; Deschamps, M.; Tarascon, J. M. Angew. Chem. Int. Ed. 2011, 50, 2526. https://doi.org/10.1002/anie.201006331
  5. Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Angew. Chem. Int. Ed. 2010, 49, 8738. https://doi.org/10.1002/anie.201003743
  6. Marx, N.; Croguennec, L.; Carlier, D.; Wattiaux, A.; Cras, F. L.; Suard, E.; Delmas, C. Dalton T. 2010, 39, 5108. https://doi.org/10.1039/b922640k
  7. Reddy, M. V.; Subba, Rao, G. V.; Chowdari, B. V. R. J. Power Sources 2010, 195, 5768. https://doi.org/10.1016/j.jpowsour.2010.03.032
  8. Qiao, X.; Yang, J.; Wang, Y.; Chen, Q.; Zhang, T.; Liu, L.; Wang, X. J. Solid State Electrochem. 2011, DOI:10.1007/s10008-011-1512-7.
  9. Recham, N.; Chotard, J. N.; Jumas, J. C.; Laffont, L.; Armand, M.; Tarascon, J. M. Chem. Mater. 2010, 22, 1142. https://doi.org/10.1021/cm9021497
  10. Barker, J.; Saidi, M.; Swoyer, J. US Pat 2002, 6855462 B2.
  11. Liu, J.; Jiang, R.; Wang, X.; Huang, T.; Yu, A. J. Power Sources 2009, 194, 536. https://doi.org/10.1016/j.jpowsour.2009.05.007
  12. Molenda, J.; Ojczyk, W.; Marzec, J. J. Power Sources 2007, 174, 689. https://doi.org/10.1016/j.jpowsour.2007.06.238
  13. Bard, A.; Faulkner, L. Electrochemical Methods; 2nd ed.; Wiley: New York, U. S. A., 2001; p 231.

피인용 문헌

  1. anode materials for high-performance aqueous lithium ion batteries vol.5, pp.2, 2017, https://doi.org/10.1039/C6TA08257B
  2. Nearly monodispersed LiFePO4F nanospheres as cathode material for lithium ion batteries vol.22, pp.7, 2018, https://doi.org/10.1007/s10008-018-3905-3
  3. One-pot synthesis of Li2FePO4F nanoparticles via a supercritical fluid process and characterization for application in lithium-ion batteries vol.3, pp.43, 2013, https://doi.org/10.1039/c3ra42686f
  4. A novel cationic-ordering fluoro-polyanionic cathode LiV0.5Fe0.5PO4F and its single phase Li+ insertion/extraction behaviour vol.3, pp.45, 2012, https://doi.org/10.1039/c3ra44094j
  5. Review on Synthesis, Characterization, and Electrochemical Properties of Fluorinated Nickel‐Cobalt‐Manganese Cathode Active Materials for Lithium‐Ion Batteries vol.7, pp.6, 2012, https://doi.org/10.1002/celc.202000029
  6. Recent advancements in development of different cathode materials for rechargeable lithium ion batteries vol.43, pp.None, 2012, https://doi.org/10.1016/j.est.2021.103112