DOI QR코드

DOI QR Code

A Study on Dosimetric Characterization of Direct Yellow 12 Dye at High Radiation γ-Dose

  • Batool, Javaria (Department of Physics, University of Agriculture Faisalabad) ;
  • Shahid, Shaukat Ali (Department of Physics, University of Agriculture Faisalabad) ;
  • Ramiza, Ramiza (Department of Physics, University of Agriculture Faisalabad) ;
  • Akhtar, Nasim (Nuclear institute for Agriculture and Biology (NIAB)) ;
  • Naz, Afshan (Department of Physics, University of Agriculture Faisalabad) ;
  • Yaseen, Maria (Department of Physics, University of Agriculture Faisalabad) ;
  • Ullah, Inam (Department of Chemistry and Biochemistry, University of Agriculture Faisalabad) ;
  • Nadeem, Muhammad (Subsurface Technology, PETRONAS, Research Sdn.Bhd.) ;
  • Shakir, Imran (Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology)
  • Received : 2012.01.30
  • Accepted : 2012.04.04
  • Published : 2012.07.20

Abstract

Aqueous solution of oxygenated Direct yellow 12 dye has been evaluated spectrophotometrically as a possible gamma rays dosimeter. The neutral (pH-7), alkaline (pH-12.5) and acidic (pH-5.5) aqueous solution of the dye were prepared and exposed to various gamma doses. Absorption spectra of unirradiated and irradiated solutions were recorded at 400 nm peak. The increase in absorbance with the increase in irradiation dose was observed from 1 to 6 kGy. The stability response of the dye solution for different environmental conditions such as temperature (low & high), light and darkness were investigated during post irradiation storage for ten days. The dye solution showed high stability in darkness for the studied period. The optical density of the dye solution was found to be decreased at high temperature storage.

Keywords

References

  1. Parwate, D. V.; Sarma, I. D.; Batra, R. J. Rad. Measur. 2007, 42, 1527. https://doi.org/10.1016/j.radmeas.2007.03.002
  2. Rauf, M. A.; Ashraf, S. S. J. of Hazard. Mat. 2008, 166, 6.
  3. Khan, H. M.; Anwar, M.; Chaudhry, Z. S. Rad. Phys. Chem. 2002, 63, 713. https://doi.org/10.1016/S0969-806X(01)00640-5
  4. Bagyo, A. N. M.; Andayani, W.; Winarno, H.; Katrin, E.; Soebianto, Y. S. Int. J. Env. Consc. Design Manufac. 2004, 12, 45.
  5. Kovacs, A.; Wajnarovits, L.; Kurucz, C.; Al-Sheikhly, M.; Mclaughlin, W. L. Rad. Phys. Chem. 1998, 52, 539. https://doi.org/10.1016/S0969-806X(98)00091-7
  6. McLaughlin, W. L.; Kosanic, M. Int. J. Appl. Rad. Isotopes. 1974, 25, 249. https://doi.org/10.1016/0020-708X(74)90092-1
  7. McLaughlin, W. L.; Boyed, A. W.; Chadwick, K. H.; McDonald, J. C.; Miller, A. Dosimetry for Radiation Processing; Taylor and Francis: London, 1989; Vol. 3, pp 402-406.
  8. Khan, H. M.; Tabassum, S.; Wahid, M. S. J. Rad. Anal. and Nucl. Chem. 2009, 3, 635.
  9. Barakat, M. F., Banna, M. E. Int. J. Low Rad. 2007, 4, 286. https://doi.org/10.1504/IJLR.2007.017637
  10. Kattan, M.; Daher, Y.; AlKassiri, H. Rad. Phys. Chem. 2007, 76, 1195. https://doi.org/10.1016/j.radphyschem.2006.12.004
  11. Kattan, M.; Kassiri, H.; Daher, Y. Appl. Rad. Isotopes. 2011, 69, 377 https://doi.org/10.1016/j.apradiso.2010.11.006
  12. Kent, J. A. Handbook of Industrial Chemistry, 10th ed.; Plenum Publishers: New York, 2003; p 892.