DOI QR코드

DOI QR Code

New Polytriazoleimides with High Thermal and Chemical Stabilities

  • E, Yanpeng (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Wan, Liqiang (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Li, Yujing (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Huang, Farong (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Du, Lei (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
  • Received : 2011.11.22
  • Accepted : 2012.03.27
  • Published : 2012.07.20

Abstract

A series of novel polytriazoleimides were prepared from various aromatic dianhydrides and a new kind of 1,2,3-triazole-containing aromatic diamine synthesized by the Cu (I)-catalyzed 1,3-dipolar cycloaddition reaction in DMAc, and characterized by FT-IR, $^1H$-NMR, XRD, DSC and TGA techniques. The results show the polytriazoleimides are soluble in most of strong polar solvents and have inherent viscosity values of 0.51-0.62 dL/g(DMAc). The polytriazoleimide films exhibit a tensile strength of 62.3-104.5 MPa and an elongation at breakage of 4.0-8.1%, a glass transition temperature ($T_g$) of $257-275^{\circ}C$, a decomposition temperature (at 5% weight loss) of $350-401^{\circ}C$ in $N_2$ atmosphere, and a dielectric constant of 2.47-3.01 at 10 MHz, which depend on the structure of the polymers. The polytriazoleimides perform good resistance to acid and alkali solution.

Keywords

References

  1. Hergenrother, P. M. High Perform Polym 2003, 15, 3-45.
  2. Ghosh, M. K.; Mittal, K. L. Polyimides: Fundamentals and Applications; Marcel Dekker: New York, 1996; p 1-35.
  3. Eastmond, G. C.; Paprotny, J. Macromolecules 1995, 28, 2140-2146. https://doi.org/10.1021/ma00111a006
  4. Imai, Y. High Perform. Polym. 1995, 7, 337-345. https://doi.org/10.1088/0954-0083/7/3/010
  5. Eastmond, G. C.; Gibas, M.; Paprotny, J. Eur. Polym. J. 1999, 35, 2097-2106. https://doi.org/10.1016/S0014-3057(99)00092-0
  6. Chern, Y. T.; Shiue, H. C. Macromolecules 1997, 30, 4646-4651. https://doi.org/10.1021/ma970520n
  7. Mathias, L. J.; Muir, A. V. G.; Reichert, V. R. Macromolecules 1991, 24, 5232-5233. https://doi.org/10.1021/ma00018a035
  8. Matsuura, T.; Hasuda, Y.; Nishi, S.; Yamada, N. Macromolecules 1991, 24, 5001-5005. https://doi.org/10.1021/ma00018a004
  9. Li, F.; Fang, S.; Ge, J. J.; Honigfort, P. S.; Chen, J. C.; Harris, F. W.; Cheng, S. Z. D. Polymer 1999, 40, 4571-4583. https://doi.org/10.1016/S0032-3861(99)00066-X
  10. Hsiao, S. H.; Yang, C. P.; Yang, C. Y. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 1487-1497. https://doi.org/10.1002/(SICI)1099-0518(199706)35:8<1487::AID-POLA18>3.0.CO;2-3
  11. Reddy, D. S.; Shu, C. F.; Wu, F. I. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3615-3621. https://doi.org/10.1002/pola.10431
  12. Simpson, J. O.; Clair, A. K. St. Thin Solid Films 1997, 308, 480- 485. https://doi.org/10.1016/S0040-6090(97)00481-1
  13. Jiang, L. Y.; Leu, C. M.; Wei, K. H. Adv. Mater 2002, 14, 426-429. https://doi.org/10.1002/1521-4095(20020318)14:6<426::AID-ADMA426>3.0.CO;2-O
  14. Long, T. M.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 14113- 14119. https://doi.org/10.1021/ja0360945
  15. Tsuchiya, K.; Ishii, H.; Shibasaki, Y.; Ando, S.; Ueda, M. Macromolecules 2004, 37, 4794-4797. https://doi.org/10.1021/ma049390q
  16. Wu, S.; Hayakawa, T.; Kikuchi, R.; Grunzinger, S. J.; Kakimoto, M. A. Macromolecules 2007, 40, 5698-5705. https://doi.org/10.1021/ma070547z
  17. Zhou, X. A.; Wan, L. Q.; Hu, Y. H.; E, Y. P.; Huang, F. R.; Du, L. Polym. J. 2010, 42, 216-222. https://doi.org/10.1038/pj.2009.337
  18. Thomas, J. R.; Liu, X. J.; Hergenrother, P. M. J. Am. Chem. Soc. 2005, 127, 12434-12435. https://doi.org/10.1021/ja051685b
  19. Yang, C. P.; Chen, R. S.; Hsu, M. F. J. Polym. Res. 2001, 8, 91-98. https://doi.org/10.1007/s10965-006-0138-4
  20. Chen, H.; Yin, J. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2026-2035. https://doi.org/10.1002/pola.10747
  21. Kirk-Othmer, ed., Encyclopedia oF Chemical Technology; Wiley: New York, 1996; p 813-851.
  22. Madhra, M. K.; Salunke, A. K.; Banerjee, S. Macromol. Chem. Phys. 2002, 203, 1238-1248. https://doi.org/10.1002/1521-3935(200206)203:9<1238::AID-MACP1238>3.0.CO;2-R
  23. Kim, S. U.; Lee, C.; Sundar, S.; Jang, W.; Yang, S. J.; Han, H. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 4303-4312. https://doi.org/10.1002/polb.20270
  24. Hougham, G.; Tesoro, G.; Viehbeck, A. Macromolucules 1996, 29, 3453-3456. https://doi.org/10.1021/ma9503423
  25. Hamciuc, C.; Hamciuc, E.; Cazacu, M.; Okrasa, L. Polym. Bull. 2008, 59, 825-832. https://doi.org/10.1007/s00289-007-0820-7

Cited by

  1. Kinetic Study of the Thermal Polymerization Reactions between Diazide and Internal Diyne vol.47, pp.2, 2014, https://doi.org/10.1002/kin.20898
  2. Preparation and Properties of Polyimides Containing 1,2,3-Triazole Moieties pp.07306679, 2015, https://doi.org/10.1002/adv.21641
  3. Mechanical, thermal and electrical properties of polyimides containing 1, 2, 3-triazole ring prepared by click reaction vol.73, pp.2, 2016, https://doi.org/10.1007/s00289-015-1488-z
  4. A class of polytriazole metallogels via CuAAC polymerization: preparation and properties vol.41, pp.11, 2017, https://doi.org/10.1039/C7NJ00610A
  5. A new high performance novolac-based polytriazole resin vol.30, pp.1, 2018, https://doi.org/10.1177/0954008316681415