DOI QR코드

DOI QR Code

INTEGRAL DOMAINS WITH FINITELY MANY STAR OPERATIONS OF FINITE TYPE

  • 투고 : 2012.04.07
  • 심사 : 2012.06.10
  • 발행 : 2012.06.30

초록

Let D be an integral domain and SF(D) be the set of star operations of finite type on D. We show that if ${\mid}SF(D){\mid}$ < ${\infty}$, then every maximal ideal of D is a $t$-ideal. We give an example of integrally closed quasi-local domains D in which the maximal ideal is divisorial (so a $t$-ideal) but ${\mid}SF(D){\mid}={\infty}$. We also study the integrally closed domains D with ${\mid}SF(D){\mid}{\leq}2$.

키워드

참고문헌

  1. D.D. Anderson, Star-operations induced by overrings, Comm. Algebra 16 (1988), 2535-2553.
  2. G.W. Chang, Prufer $\ast$-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
  3. G.W. Chang, On the cardinality of stable star operations of nite type on an integral domain, C.R. Math. Acad. Sci. Paris, Ser. I(2012), in press.
  4. A. Fabbri, Integral domains having a unique Kronecker function ring, J. Pure Appl. Algebra 215 (2011), 1069-1084. https://doi.org/10.1016/j.jpaa.2010.07.012
  5. M. Fontana and G. Picozza, On some classes of integral domains de ned by Krull's a.b. operations, J. Algebra 341 (2011), 179-197. https://doi.org/10.1016/j.jalgebra.2011.05.037
  6. M. Fontana and M. Zafrullah, On v-domains: a survey, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swansm (Eds.), Commutative Algebra, Noetherian and Non-Noetherian Persepectives, Springer, New York, 2011, 145-180.
  7. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure Appl. Math. 90, Queen's University, Kingston, Ontario, 1992.
  8. J.R. Hedstrom and E.G. Housotn, Pseudo-valuation domains, Paci c J. Math. 75 (1978), 137-147. https://doi.org/10.2140/pjm.1978.75.137
  9. W.J. Heinzer, Integral domains in which each non-zero ideal is divisorial, Matematika 15 (1968), 164-170. https://doi.org/10.1112/S0025579300002527
  10. W. Heinzer, J.A. Huckaba, and I. Papick, m-canonical ideals in integral domains, Comm. Algebra 26 (1998), 3021-3043. https://doi.org/10.1080/00927879808826325
  11. E. Houston, A. Mimouni, and M.H. Park, Integral domains which admit at most two star operations, Comm. Algebra 39 (2011), 1907-1921. https://doi.org/10.1080/00927872.2010.480956
  12. E. Houston, A. Mimouni, and M.H. Park, Integrally closed domains with only nitely many star operations, preprint.
  13. I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.

피인용 문헌

  1. Some classification of certain integral domains via conductor overrings and semistar operations vol.49, pp.1, 2012, https://doi.org/10.1080/00927872.2020.1801708
  2. Finitely star regular domains vol.226, pp.7, 2022, https://doi.org/10.1016/j.jpaa.2021.106983