참고문헌
- Calin, M., Zhang, L.C. and Eckert, J. (2007), "Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy", Scripta Mater., 57(12), 1101-1104. https://doi.org/10.1016/j.scriptamat.2007.08.018
- Das, J., Kim, K.B., Baier, F., Loser, W. and Eckert, J. (2005), "High-strength Ti-base ultrafine eutectic with enhanced ductility", Appl. Phys. Lett., 87(16), 161907. https://doi.org/10.1063/1.2105998
- Das, J., Theissmann, R., Loser, W. and Eckert, J. (2010), "Effect of Sn on microstructure and mechanical properties of Ti-Fe-(Sn) ultrafine eutectic composites", J. Mater. Res., 25(5), 943-956. https://doi.org/10.1557/JMR.2010.0116
- Guo, F.Q., Wang, H.J., Poon, S.J. and Shiflet, G.J. (2005), "Ductile titanium-based glassy alloy ingots", Appl. Phys. Lett., 86(9), 091907. https://doi.org/10.1063/1.1872214
- Han, J.H., Kim, K.B., Yi, S., Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Das, J. and Eckert, J. (2008), "Formation of a bimodal eutectic structure in Ti-Fe-Sn alloys with enhanced plasticity", Appl. Phys. Lett., 93(14), 141901. https://doi.org/10.1063/1.2990662
- He, G., Eckert, J., Loser, W. and Schultz, L. (2003), "Novel Ti-base nanostructure-dendrite composite with enhanced plasticity", Nature Mater., 2(1), 33-37. https://doi.org/10.1038/nmat792
- Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetriou, M.D. and Johnson, W.L. (2008), "Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility", P. Natl. Acad. Sci. USA, 105(51), 20136-20140. https://doi.org/10.1073/pnas.0809000106
- Huang, Y.J., Shen, J., Sun, J.F. and Yu, X.B. (2007), "A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability", J. Alloy. Compd., 427(1-2), 171-175. https://doi.org/10.1016/j.jallcom.2006.03.006
- Inoue, A. (2000), "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta Mater., 48(1), 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6
- Johnson, W.L. (1999), "Bulk glass-forming metallic alloys: Science and technology", MRS Bull., 24(10), 42-56. https://doi.org/10.1557/S0883769400053252
- Koch, C.C. (2003), "Ductility in nanostructured and ultra fine-grained materials: recent evidence for Optimism", J. Metast. Nano. Mater., 18, 9-20. https://doi.org/10.4028/www.scientific.net/JMNM.18.9
- Lazar, P., Podloucky, R. and Wolf, W. (2005), "Correlating elasticity and cleavage", Appl. Phys. Lett., 87(26), 261910. https://doi.org/10.1063/1.2149988
- Louzguina-Luzgina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2006), "Influences of additional alloying elements (V, Ni, Cu, Sn, B) on structure and mechanical properties of high-strength hypereutectic Ti-Fe-Co bulk alloys", Intermetallics, 14(3), 255-259. https://doi.org/10.1016/j.intermet.2005.06.002
- Louzguina-Luzgina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2009), "Effect of B addition to hypereutectic Ti-based alloys", J. Alloy. Compd., 474(1-2), 131-133. https://doi.org/10.1016/j.jallcom.2008.06.089
- Louzguina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2005), "Ultra-strong and ductile hypereutectic Ti-based bulk alloys", J. Metastable Nanocryst. Mater, 24-25, 265-268. https://doi.org/10.4028/www.scientific.net/JMNM.24-25.265
- Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V., Kato, H. and Inoue, A. (2005), "Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility", Acta Mater., 53(7), 2009-2017. https://doi.org/10.1016/j.actamat.2005.01.012
- Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V. and Inoue, A. (2007), "Deformation behavior of high strength metastable hypereutectic Ti-Fe-Co alloys", Intermetallics, 15(2), 181-186. https://doi.org/10.1016/j.intermet.2006.05.006
- Louzguine, D.V., Kato, H., Louzguina, L.V. and Inoue, A. (2004), "High-strength binary Ti-Fe bulk alloys with enhanced ductility", J. Mater. Res., 19(12), 3600-3606. https://doi.org/10.1557/JMR.2004.0462
- Ma, C.L., Ishihara, S., Soejima, H. Nishiyama, N. and Inoue, A. (2004), "Formation of new Ti-based metallic glassy alloys", Mater. Trans., 45(5), 1802-1806. https://doi.org/10.2320/matertrans.45.1802
- Ma, E. (2003a), "Nanocrystalline materials: Controlling plastic instability", Nature Mater., 2(1), 7-8. https://doi.org/10.1038/nmat797
- Ma, E. (2003b), "Instabilities and ductility of nanocrystalline and ultrafine-grained metals", Scripta Mater., 49(7), 663-668. https://doi.org/10.1016/S1359-6462(03)00396-8
- Ma, E. (2006), "Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys", JOM, 58(4), 49-53. https://doi.org/10.1007/s11837-006-0215-5
- Misra, D.K., Sohn, S.W., Gabrisch, H. Kim, W.T. and Kim, D.H. (2010a), "High strength Ti-Fe-(In, Nb) composites with improved plasticity", Intermetallics, 18(3), 342-347. https://doi.org/10.1016/j.intermet.2009.08.005
- Misra, D.K., Sohn, S.W., Kim, W.T. and Kim. D.H. (2010b), "High strength hypereutectic Ti-Fe-Ga composites with improved plasticity", Intermetallics, 18(2), 254-258. https://doi.org/10.1016/j.intermet.2009.07.022
- Oak, J.J., Louzguine-Luzgin, D.V. and Inoue, A. (2007), "Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior", J. Mater. Res., 22(5), 1346-1353. https://doi.org/10.1557/jmr.2007.0154
- Ohkuboa, T., Nagahamaa, D., Mukaia, T. and Hono, K. (2007), "Stress-strain behaviors of Ti-based bulk metallic glass and their nanostructures", J. Mater. Res., 22(5), 1406-1413. https://doi.org/10.1557/jmr.2007.0180
- Park, J.M., Han, J.H., Kim, K.B. Mattern, N., Eckert, J. and Kim, D.H. (2009), "Favorable microstructural modulation and enhancement of mechanical properties of Ti-Fe-Nb ultrafine composites", Philos. Mag. Lett., 89(10), 623-632. https://doi.org/10.1080/09500830903236020
- Song, G.A., Han, J.H., Kim, T.E. Park, J.M., Kim, D.H., Yi, S., Seo, Y., Lee, N.S. and Kim, K.B. (2011), "Heterogeneous eutectic structure in Ti-Fe-Sn alloys", Intermetallics, 19(4), 536-540. https://doi.org/10.1016/j.intermet.2010.11.030
- Sun, B.B., Sui, M.L., Wang, Y.M., He, G., Eckert, J. and Ma, E. (2006), "Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility", Acta Mater., 54(5), 1349-1357. https://doi.org/10.1016/j.actamat.2005.11.011
- Wang, Y.L., Ma, E. and Xu, J. (2008), "Bulk metallic glass formation near the TiCu-TiNi pseudo-binary eutectic composition", Philos. Mag. Lett., 88(5), 319-325. https://doi.org/10.1080/09500830801968583
- Wang, Y.M., Chen, M.W., Zhou, F.H. and Ma, E. (2002), "High tensile ductility in a nanostructured metal", Nature, 419(6910), 912-915. https://doi.org/10.1038/nature01133
-
Zhang, L.C. and Xu, J. (2002), "Formation of glassy
$Ti_{50}Cu_{20}Ni_{24}Si_4B_2$ alloy by high-energy ball milling", Mater. Sci. Forum, 386-388, 47-52. https://doi.org/10.4028/www.scientific.net/MSF.386-388.47 - Zhang, L.C., Xu, J. and Ma, E. (2002), "Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)(44-x)AlxSi4B2 alloys with supercooled liquid region", J. Mater. Res., 17(7), 1743-1749. https://doi.org/10.1557/JMR.2002.0258
- Zhang, L.C., Shen, Z.Q. and Xu, J. (2005), "Thermal stability of mechanically alloyed boride/Ti50Cu18Ni22Al4Sn6 glassy alloy composites", J. Non-Cryst. Solids, 351(27-29), 2277-2286. https://doi.org/10.1016/j.jnoncrysol.2005.05.027
- Zhang, L.C., Xu, J. and Eckert, J. (2006a), "Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite", J. Appl. Phys., 100(3), 033514. https://doi.org/10.1063/1.2234535
- Zhang, L.C., Xu, J. and Ma, E. (2006b), "Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion", Mat. Sci. Eng. A, 434(1-2), 280-288. https://doi.org/10.1016/j.msea.2006.06.085
- Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M. and Eckert, J. (2007a), "High strength Ti-Fe-Sn ultrafine composites with large plasticity", Scripta Mater., 57(2), 101-104. https://doi.org/10.1016/j.scriptamat.2007.03.031
- Zhang, L.C., Lu, H.B., Mickel, C. and Eckert, J. (2007b), "Ductile ultrafine-grained Ti-based alloys with high yield strength", Appl. Phys. Lett., 91(5), 051906. https://doi.org/10.1063/1.2766861
- Zhang, L.C., Lu, H.B., Calin, M. Pereloma, E.V. and Eckert, J. (2010), "High-strength ultrafine-grained Ti-Fe-Sn alloys with a bimodal structure", J. Phys. Conf. Ser., 240(1), 012103.
- Zhang, L.C., Calin, M. and Eckert, J. (2011), "High-strength titanium base alloys with multiple length-scale microstructure", Chapter 8 in: David E. Malach (Ed.), Advances in Mechanical Engineering Research, Volume 2, Nova Science Publishers, ISBN 978-1-61761-984-7, Hauppauge, NY, USA.
- Zhang, T. and Inoue, A. (2001), "Ti-based amorphous alloys with a large supercooled liquid region", Mater. Sci. Eng. A-Struct., 304(1-2), 771-774.
- Zheng, N., Wang, G., Zhang, L.C., Calin, M., Stoica, M., Vaughan, G., Mattern, N. and Eckert, J. (2010), "In situ high-energy x-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating", J. Mater. Res., 25(12), 2271-2277. https://doi.org/10.1557/jmr.2010.0298
피인용 문헌
- Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys vol.47, pp.12, 2016, https://doi.org/10.1007/s11661-016-3789-8
- Ti-Fe-Sn-Nb hypoeutectic alloys with superb yield strength and significant strain-hardening vol.135, 2017, https://doi.org/10.1016/j.scriptamat.2017.03.033
- The α→ω and β→ω phase transformations in Ti–Fe alloys under high-pressure torsion vol.144, 2018, https://doi.org/10.1016/j.actamat.2017.10.051
- Phase Transformations in Ti-Fe Alloys Induced by High-Pressure Torsion vol.17, pp.12, 2015, https://doi.org/10.1002/adem.201500143
- Prediction and Prevention of Distortion for the Thin-Walled Aluminum Investment Casting vol.915-916, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.915-916.1049
- A Review on High‐Strength Titanium Alloys: Microstructure, Strengthening, and Properties vol.21, pp.8, 2019, https://doi.org/10.1002/adem.201801359