DOI QR코드

DOI QR Code

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang (School of Mechanical and Chemical Engineering, The University of Western Australia)
  • Received : 2012.01.07
  • Accepted : 2012.02.14
  • Published : 2012.03.25

Abstract

In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

Keywords

References

  1. Calin, M., Zhang, L.C. and Eckert, J. (2007), "Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy", Scripta Mater., 57(12), 1101-1104. https://doi.org/10.1016/j.scriptamat.2007.08.018
  2. Das, J., Kim, K.B., Baier, F., Loser, W. and Eckert, J. (2005), "High-strength Ti-base ultrafine eutectic with enhanced ductility", Appl. Phys. Lett., 87(16), 161907. https://doi.org/10.1063/1.2105998
  3. Das, J., Theissmann, R., Loser, W. and Eckert, J. (2010), "Effect of Sn on microstructure and mechanical properties of Ti-Fe-(Sn) ultrafine eutectic composites", J. Mater. Res., 25(5), 943-956. https://doi.org/10.1557/JMR.2010.0116
  4. Guo, F.Q., Wang, H.J., Poon, S.J. and Shiflet, G.J. (2005), "Ductile titanium-based glassy alloy ingots", Appl. Phys. Lett., 86(9), 091907. https://doi.org/10.1063/1.1872214
  5. Han, J.H., Kim, K.B., Yi, S., Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Das, J. and Eckert, J. (2008), "Formation of a bimodal eutectic structure in Ti-Fe-Sn alloys with enhanced plasticity", Appl. Phys. Lett., 93(14), 141901. https://doi.org/10.1063/1.2990662
  6. He, G., Eckert, J., Loser, W. and Schultz, L. (2003), "Novel Ti-base nanostructure-dendrite composite with enhanced plasticity", Nature Mater., 2(1), 33-37. https://doi.org/10.1038/nmat792
  7. Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetriou, M.D. and Johnson, W.L. (2008), "Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility", P. Natl. Acad. Sci. USA, 105(51), 20136-20140. https://doi.org/10.1073/pnas.0809000106
  8. Huang, Y.J., Shen, J., Sun, J.F. and Yu, X.B. (2007), "A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability", J. Alloy. Compd., 427(1-2), 171-175. https://doi.org/10.1016/j.jallcom.2006.03.006
  9. Inoue, A. (2000), "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta Mater., 48(1), 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6
  10. Johnson, W.L. (1999), "Bulk glass-forming metallic alloys: Science and technology", MRS Bull., 24(10), 42-56. https://doi.org/10.1557/S0883769400053252
  11. Koch, C.C. (2003), "Ductility in nanostructured and ultra fine-grained materials: recent evidence for Optimism", J. Metast. Nano. Mater., 18, 9-20. https://doi.org/10.4028/www.scientific.net/JMNM.18.9
  12. Lazar, P., Podloucky, R. and Wolf, W. (2005), "Correlating elasticity and cleavage", Appl. Phys. Lett., 87(26), 261910. https://doi.org/10.1063/1.2149988
  13. Louzguina-Luzgina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2006), "Influences of additional alloying elements (V, Ni, Cu, Sn, B) on structure and mechanical properties of high-strength hypereutectic Ti-Fe-Co bulk alloys", Intermetallics, 14(3), 255-259. https://doi.org/10.1016/j.intermet.2005.06.002
  14. Louzguina-Luzgina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2009), "Effect of B addition to hypereutectic Ti-based alloys", J. Alloy. Compd., 474(1-2), 131-133. https://doi.org/10.1016/j.jallcom.2008.06.089
  15. Louzguina, L.V., Louzguine-Luzgin, D.V. and Inoue, A. (2005), "Ultra-strong and ductile hypereutectic Ti-based bulk alloys", J. Metastable Nanocryst. Mater, 24-25, 265-268. https://doi.org/10.4028/www.scientific.net/JMNM.24-25.265
  16. Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V., Kato, H. and Inoue, A. (2005), "Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility", Acta Mater., 53(7), 2009-2017. https://doi.org/10.1016/j.actamat.2005.01.012
  17. Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V. and Inoue, A. (2007), "Deformation behavior of high strength metastable hypereutectic Ti-Fe-Co alloys", Intermetallics, 15(2), 181-186. https://doi.org/10.1016/j.intermet.2006.05.006
  18. Louzguine, D.V., Kato, H., Louzguina, L.V. and Inoue, A. (2004), "High-strength binary Ti-Fe bulk alloys with enhanced ductility", J. Mater. Res., 19(12), 3600-3606. https://doi.org/10.1557/JMR.2004.0462
  19. Ma, C.L., Ishihara, S., Soejima, H. Nishiyama, N. and Inoue, A. (2004), "Formation of new Ti-based metallic glassy alloys", Mater. Trans., 45(5), 1802-1806. https://doi.org/10.2320/matertrans.45.1802
  20. Ma, E. (2003a), "Nanocrystalline materials: Controlling plastic instability", Nature Mater., 2(1), 7-8. https://doi.org/10.1038/nmat797
  21. Ma, E. (2003b), "Instabilities and ductility of nanocrystalline and ultrafine-grained metals", Scripta Mater., 49(7), 663-668. https://doi.org/10.1016/S1359-6462(03)00396-8
  22. Ma, E. (2006), "Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys", JOM, 58(4), 49-53. https://doi.org/10.1007/s11837-006-0215-5
  23. Misra, D.K., Sohn, S.W., Gabrisch, H. Kim, W.T. and Kim, D.H. (2010a), "High strength Ti-Fe-(In, Nb) composites with improved plasticity", Intermetallics, 18(3), 342-347. https://doi.org/10.1016/j.intermet.2009.08.005
  24. Misra, D.K., Sohn, S.W., Kim, W.T. and Kim. D.H. (2010b), "High strength hypereutectic Ti-Fe-Ga composites with improved plasticity", Intermetallics, 18(2), 254-258. https://doi.org/10.1016/j.intermet.2009.07.022
  25. Oak, J.J., Louzguine-Luzgin, D.V. and Inoue, A. (2007), "Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior", J. Mater. Res., 22(5), 1346-1353. https://doi.org/10.1557/jmr.2007.0154
  26. Ohkuboa, T., Nagahamaa, D., Mukaia, T. and Hono, K. (2007), "Stress-strain behaviors of Ti-based bulk metallic glass and their nanostructures", J. Mater. Res., 22(5), 1406-1413. https://doi.org/10.1557/jmr.2007.0180
  27. Park, J.M., Han, J.H., Kim, K.B. Mattern, N., Eckert, J. and Kim, D.H. (2009), "Favorable microstructural modulation and enhancement of mechanical properties of Ti-Fe-Nb ultrafine composites", Philos. Mag. Lett., 89(10), 623-632. https://doi.org/10.1080/09500830903236020
  28. Song, G.A., Han, J.H., Kim, T.E. Park, J.M., Kim, D.H., Yi, S., Seo, Y., Lee, N.S. and Kim, K.B. (2011), "Heterogeneous eutectic structure in Ti-Fe-Sn alloys", Intermetallics, 19(4), 536-540. https://doi.org/10.1016/j.intermet.2010.11.030
  29. Sun, B.B., Sui, M.L., Wang, Y.M., He, G., Eckert, J. and Ma, E. (2006), "Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility", Acta Mater., 54(5), 1349-1357. https://doi.org/10.1016/j.actamat.2005.11.011
  30. Wang, Y.L., Ma, E. and Xu, J. (2008), "Bulk metallic glass formation near the TiCu-TiNi pseudo-binary eutectic composition", Philos. Mag. Lett., 88(5), 319-325. https://doi.org/10.1080/09500830801968583
  31. Wang, Y.M., Chen, M.W., Zhou, F.H. and Ma, E. (2002), "High tensile ductility in a nanostructured metal", Nature, 419(6910), 912-915. https://doi.org/10.1038/nature01133
  32. Zhang, L.C. and Xu, J. (2002), "Formation of glassy $Ti_{50}Cu_{20}Ni_{24}Si_4B_2$ alloy by high-energy ball milling", Mater. Sci. Forum, 386-388, 47-52. https://doi.org/10.4028/www.scientific.net/MSF.386-388.47
  33. Zhang, L.C., Xu, J. and Ma, E. (2002), "Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)(44-x)AlxSi4B2 alloys with supercooled liquid region", J. Mater. Res., 17(7), 1743-1749. https://doi.org/10.1557/JMR.2002.0258
  34. Zhang, L.C., Shen, Z.Q. and Xu, J. (2005), "Thermal stability of mechanically alloyed boride/Ti50Cu18Ni22Al4Sn6 glassy alloy composites", J. Non-Cryst. Solids, 351(27-29), 2277-2286. https://doi.org/10.1016/j.jnoncrysol.2005.05.027
  35. Zhang, L.C., Xu, J. and Eckert, J. (2006a), "Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite", J. Appl. Phys., 100(3), 033514. https://doi.org/10.1063/1.2234535
  36. Zhang, L.C., Xu, J. and Ma, E. (2006b), "Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion", Mat. Sci. Eng. A, 434(1-2), 280-288. https://doi.org/10.1016/j.msea.2006.06.085
  37. Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M. and Eckert, J. (2007a), "High strength Ti-Fe-Sn ultrafine composites with large plasticity", Scripta Mater., 57(2), 101-104. https://doi.org/10.1016/j.scriptamat.2007.03.031
  38. Zhang, L.C., Lu, H.B., Mickel, C. and Eckert, J. (2007b), "Ductile ultrafine-grained Ti-based alloys with high yield strength", Appl. Phys. Lett., 91(5), 051906. https://doi.org/10.1063/1.2766861
  39. Zhang, L.C., Lu, H.B., Calin, M. Pereloma, E.V. and Eckert, J. (2010), "High-strength ultrafine-grained Ti-Fe-Sn alloys with a bimodal structure", J. Phys. Conf. Ser., 240(1), 012103.
  40. Zhang, L.C., Calin, M. and Eckert, J. (2011), "High-strength titanium base alloys with multiple length-scale microstructure", Chapter 8 in: David E. Malach (Ed.), Advances in Mechanical Engineering Research, Volume 2, Nova Science Publishers, ISBN 978-1-61761-984-7, Hauppauge, NY, USA.
  41. Zhang, T. and Inoue, A. (2001), "Ti-based amorphous alloys with a large supercooled liquid region", Mater. Sci. Eng. A-Struct., 304(1-2), 771-774.
  42. Zheng, N., Wang, G., Zhang, L.C., Calin, M., Stoica, M., Vaughan, G., Mattern, N. and Eckert, J. (2010), "In situ high-energy x-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating", J. Mater. Res., 25(12), 2271-2277. https://doi.org/10.1557/jmr.2010.0298

Cited by

  1. Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys vol.47, pp.12, 2016, https://doi.org/10.1007/s11661-016-3789-8
  2. Ti-Fe-Sn-Nb hypoeutectic alloys with superb yield strength and significant strain-hardening vol.135, 2017, https://doi.org/10.1016/j.scriptamat.2017.03.033
  3. The α→ω and β→ω phase transformations in Ti–Fe alloys under high-pressure torsion vol.144, 2018, https://doi.org/10.1016/j.actamat.2017.10.051
  4. Phase Transformations in Ti-Fe Alloys Induced by High-Pressure Torsion vol.17, pp.12, 2015, https://doi.org/10.1002/adem.201500143
  5. Prediction and Prevention of Distortion for the Thin-Walled Aluminum Investment Casting vol.915-916, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.915-916.1049
  6. A Review on High‐Strength Titanium Alloys: Microstructure, Strengthening, and Properties vol.21, pp.8, 2019, https://doi.org/10.1002/adem.201801359