DOI QR코드

DOI QR Code

Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion

염소이온 함유된 용액에서 Ti합금의 부식특성에 미치는 Hafnium함량의 영향

  • Kim, Sung-Hwan (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
  • 김성환 (조선대학교 치의학전문대학원 치과재료학교실 & 생체재료나노계면활성화센터) ;
  • 최한철 (조선대학교 치의학전문대학원 치과재료학교실 & 생체재료나노계면활성화센터)
  • Received : 2012.04.26
  • Accepted : 2012.10.16
  • Published : 2012.10.31

Abstract

The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.

Keywords

References

  1. S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, and S. Asao, J. Biomed. Mater. Eng., 6, 79 (1996).
  2. G. C. McKay, R. Macnair, C. McDonald, and M. H. Grant, Biomaterials, 17, 1339 (1996). https://doi.org/10.1016/S0142-9612(96)80012-3
  3. N. R. Van, J. Mater. Sci., 22, 3801 (1987). https://doi.org/10.1007/BF01133326
  4. M. F. Semlitsch, H. Weber, R. M. Streicher, and R. Schon, Biomaterials, 13, 781 (1992). https://doi.org/10.1016/0142-9612(92)90018-J
  5. Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, and Y. Furuki, J. Japan Inst. Metals., 9, 890 (1996).
  6. M. Niinomi, Metall Mater. Trans., 33, 477 (2002).
  7. Z. Cai, M. Koike, H. Sato, M. Brezner, Q. Guo, M. Komatsu, O. Okuno, and T. Okabe, Acta Biomater., 1, 353 (2005). https://doi.org/10.1016/j.actbio.2005.02.006
  8. E. W. Collings, Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, (1984)
  9. R. Strietzel, A. Hosch, H. Kalbfleisch, and D. Bush, Biomaterials, 19, 1495 (1998). https://doi.org/10.1016/S0142-9612(98)00065-9
  10. P. A. Dearnly, K. L. Dahm, and H. Cimenoolu, Wear, 256, 469 (2003).
  11. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, J. Biomed. Mater. Res., 59, 18 (2002). https://doi.org/10.1002/jbm.1212
  12. Y. H. Jeong, K. Lee, H. C. Choe, Y. M. Ko, and W. A. Brantley, Thin Solid Film, 517, 5365 (2009). https://doi.org/10.1016/j.tsf.2009.03.167
  13. Y. L. Zhou and M. Niinomi, Surf. Coat. Tech., 204, 180 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.006
  14. H. C. Choe, Thin Solid Films, 519, 4652 (2011). https://doi.org/10.1016/j.tsf.2011.01.011
  15. Y. H. Jeong, W. G. Kim, G. H. Park, H. C. Choe, and Y. M. Ko, Trans. Nonferr. Metals. Soc. China, 19, 852 (2009). https://doi.org/10.1016/S1003-6326(08)60363-5
  16. B. L. Wang, Y. F. Zheng, and L. C. Zhao, Materials and Corrosion, 60, 330 (2009). https://doi.org/10.1002/maco.200805120
  17. Y. H. jeong, W. A. Brantley, and H. C. Choe, Surf. Coat. Tech., in Press (2012).