Browse > Article
http://dx.doi.org/10.14773/cst.2012.11.5.191

Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion  

Kim, Sung-Hwan (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Publication Information
Corrosion Science and Technology / v.11, no.5, 2012 , pp. 191-195 More about this Journal
Abstract
The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.
Keywords
Ti-xHf alloy; corrosion behavior; potentiostatic; potentiodynamic; dental implant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, and S. Asao, J. Biomed. Mater. Eng., 6, 79 (1996).
2 G. C. McKay, R. Macnair, C. McDonald, and M. H. Grant, Biomaterials, 17, 1339 (1996).   DOI   ScienceOn
3 N. R. Van, J. Mater. Sci., 22, 3801 (1987).   DOI   ScienceOn
4 M. F. Semlitsch, H. Weber, R. M. Streicher, and R. Schon, Biomaterials, 13, 781 (1992).   DOI   ScienceOn
5 Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, and Y. Furuki, J. Japan Inst. Metals., 9, 890 (1996).
6 M. Niinomi, Metall Mater. Trans., 33, 477 (2002).
7 Z. Cai, M. Koike, H. Sato, M. Brezner, Q. Guo, M. Komatsu, O. Okuno, and T. Okabe, Acta Biomater., 1, 353 (2005).   DOI   ScienceOn
8 E. W. Collings, Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, (1984)
9 R. Strietzel, A. Hosch, H. Kalbfleisch, and D. Bush, Biomaterials, 19, 1495 (1998).   DOI   ScienceOn
10 P. A. Dearnly, K. L. Dahm, and H. Cimenoolu, Wear, 256, 469 (2003).
11 D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, J. Biomed. Mater. Res., 59, 18 (2002).   DOI   ScienceOn
12 Y. H. Jeong, K. Lee, H. C. Choe, Y. M. Ko, and W. A. Brantley, Thin Solid Film, 517, 5365 (2009).   DOI   ScienceOn
13 Y. L. Zhou and M. Niinomi, Surf. Coat. Tech., 204, 180 (2009).   DOI   ScienceOn
14 H. C. Choe, Thin Solid Films, 519, 4652 (2011).   DOI   ScienceOn
15 Y. H. Jeong, W. G. Kim, G. H. Park, H. C. Choe, and Y. M. Ko, Trans. Nonferr. Metals. Soc. China, 19, 852 (2009).   DOI   ScienceOn
16 B. L. Wang, Y. F. Zheng, and L. C. Zhao, Materials and Corrosion, 60, 330 (2009).   DOI   ScienceOn
17 Y. H. jeong, W. A. Brantley, and H. C. Choe, Surf. Coat. Tech., in Press (2012).