DOI QR코드

DOI QR Code

Fatigue crack growth behaviors of SA508 Gr.3 Cl.2 base and weld material in 290℃ water environment

SA508 Gr.3 Cl.2 저합금강과 용접부의 290℃ 수화학 환경에서 피로균열거동 분석

  • 조평연 (한국과학기술원 원자력 및 양자공학과) ;
  • 김정현 (한국과학기술원 원자력 및 양자공학과) ;
  • 장창희 (한국과학기술원 원자력 및 양자공학과) ;
  • 조현철 (두산중공업(주))
  • Received : 2012.06.11
  • Accepted : 2012.08.29
  • Published : 2012.08.31

Abstract

The fatigue crack growth behaviors of SA508 Gr.3 Cl.2 low alloy steel in high temperature water environment were investigated. Overall, weld metal showed similar crack growth rate as that of base metal. At 0.01 Hz, fatigue crack growth rate (FCGR) was higher than that in air while the difference was smaller at 0.1 Hz. Also, FCGR showed ${\Delta}K$ dependency at 0.1 Hz only, indicating that the environmental effect was much greater at slower loading frequency of 0.01 Hz. FCGR of SA508 Gr.3 Cl.2 low alloy steel was compatible to or smaller than the ASME Sec. XI fatigue reference curves in high temperature water environment.

Keywords

References

  1. S. G. Lee, C. Jang, and I. S. Kim, J. Kor. Inst. Met. Mater., 38, 11 (2000).
  2. S. G. Lee, C. Jang, and I. S. Kim, Proceedings of ICAPP 06, Reno, NV USA (2006).
  3. J. Y. Huang, M. C. Young, S. L. Jeng, J. J. Yeh, J. S. Huang, and R. C. Kuo, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Whistler, British Columbia (2007).
  4. J. Y. Huang, M. C. Young, S. L. Jeng, J. J. Yeh, J. S. Huang, and R. C. Kuo, J. Nucl. Mater., 405, 17 (2010). https://doi.org/10.1016/j.jnucmat.2010.07.029
  5. W. H. Bamford, Journal of Pressure Vessel Technology, 102, 433 (1980). https://doi.org/10.1115/1.3263355
  6. S. W. Woo, J. D. Kwon, S. J. Choi, and Y. H. Choi, The Korean Society of Mechanical Engineers, 4, 72 (2004).
  7. C. H. Yang and K. S. Shin, Bull. Kor. Inst. Met. Mater., 10, 300 (1997).
  8. ASTM, E647 (2008).
  9. B. Dogan, U. Ceyhan, K. Nikbin, D. Dean, Proceedings of PVP2006-ICPVT-11, ASME Pressure Vessels and Piping Division Conference, Vancoucer, BC, Canada (2006).
  10. C. Jang, P. Y. Cho, M. Kim, and J. S. Yang, Mater. Des., 31, 1862 (2009).
  11. J. H. Bulloch, Int. J. Pres. Ves. Pip., 56, 149 (1993). https://doi.org/10.1016/0308-0161(93)90092-8
  12. H. Jang, H. Cho, C. Jang, T. S. Kim, and C. K. Moon, Nucl. Eng. Technol., 40, 225 (2007).
  13. H. Cho, H. Jang, B. K. Kim, I. S. Kim, and C. Jang, Key Engineering Materials, 345, 1039 (2007).
  14. J. D. Atkinson, Nucl. Eng. Des., 184, 13 (1998). https://doi.org/10.1016/S0029-5493(97)00365-8
  15. F. P. Ford, Corrosion, 52, 375 (1996). https://doi.org/10.5006/1.3292125