DOI QR코드

DOI QR Code

플라즈마 유동제어를 위한 DBD 플라즈마 액츄에이터의 설계변수에 따른 특성 연구

Study on Characteristics of DBD Plasma Actuator as Design Parameters for Plasma Flow Control

  • 투고 : 2012.03.23
  • 심사 : 2012.05.25
  • 발행 : 2012.06.01

초록

DBD(Dielectric Barrier Discharge) 플라즈마 액츄에이터의 설계 파라미터에 따른 특성을 연구하였다. 방전전압, 주파수, 전극의 간격, 폭, 길이, 유전체 두께에 따른 DBD 플라즈마 액츄에이터의 유속 및 소모전력을 측정하였다. 방전전압과 주파수가 클수록 유속과 소모전력은 증가하였다. 전극간격은 클수록 소모전력은 감소하면서 유속은 증가하였으나, 플라즈마 방전을 위해 높은 전압이 요구되었다. 상부전극폭은 좁을수록, 하부전극폭은 넓을수록 일정한 소모전력으로 유속을 증가시킬 수 있었다. 주어진 방전조건과 전극형상에서 DBD 플라즈마 액츄에이터의 성능을 예측할 수 있을 것으로 기대된다.

Characteristics of DBD(Dielectric Barrier Discharge) plasma actuator as design parameters were investigated for plasma flow control. Flow velocity and power consumption of the DBD plasma actuator were measured according to the design parameters such as discharge voltage and frequency, gap, width and length of electrode, and the thickness of dielectric barrier. The flow velocity and power consumption increased as the discharge voltage and frequency increased. As the electrode gap increased, the flow velocity increased with decreasing the power consumption, whereas high voltage was required for the plasma discharge. The flow velocity increased as the upper-electrode width decreased, and as the lower-electrode width increased at the constant power consumption. The performance of the DBD plasma actuator can be estimated at the given discharge and geometry conditions.

키워드

참고문헌

  1. E. Moreau, "Airflow control by nonthermal plasma actuators," J. Phys. D: Appl. Phys., Vol. 40. 2007, pp. 605-636. https://doi.org/10.1088/0022-3727/40/3/S01
  2. J. Pons, E. Moreau and G. Touchard, "Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics," J. Phys. D: Appl. Phys., Vol. 38, 2005, pp. 3635-3642. https://doi.org/10.1088/0022-3727/38/19/012
  3. H. Velkoff and J. Ketchman, "Effect of an electrostatic field on boundary layer transition," AIAA J., Vol. 16, 1968, pp. 1381-3.
  4. F.O. Thomas, A. Kozlov and T.C. Corke, "Plasma actuators for bluff body flow control," AIAA Meeting (San Francisco, USA, June 2006), paper #2006-2845.
  5. J.R. Roth, "Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a One Atmosphere Uniform Glow Discharge Plasma," Phys. Plasmas, Vol. 10, 2003, pp. 2117-2126. https://doi.org/10.1063/1.1564823
  6. Thomas C. Corke, Flint O. Thomas, and Junhui Huang, "Documentation and Control of Flow Separation on a Low Pressure Turbine Linear Cascade of Pak-B Blades Using Plasma Actuators," NASA Technical Report, NASA/CR-2007-214677.
  7. C. Kwing-So, T. Jukes and R. Whalley, "Turbulent boundary-layer control with plasma actuators," Phil. Trans. R. Soc. A, Vol. 369, 2011, pp. 1443-1458. https://doi.org/10.1098/rsta.2010.0362
  8. C. Young-Chang and S. Wei, "Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator," Progress in Aerospace Sciences, Vol. 47, 2011, pp. 495-521. https://doi.org/10.1016/j.paerosci.2011.06.005
  9. 이창욱, 윤수환, 김태규, "플라즈마 유동제 어를 위한 DBD 액츄에이터 해석 및 성능평가," 한국추진공학회 2012년도 춘계학술대회 논문집, 2012, pp. 290-293.