DOI QR코드

DOI QR Code

Finite Element Analysis of Half Channel Angular Extrusion (HCAE) as a New Severe Plastic Deformation Process

새로운 강소성 가공 공정으로서 Half Channel Angular Extrusion(HCAE)의 유한요소해석

  • 김경진 (경일대학교 기계자동차학부)
  • Received : 2011.10.17
  • Accepted : 2012.02.03
  • Published : 2012.06.01

Abstract

This paper focuses on the development of a new SPD (severe plastic deformation) process named HCAE (half channel angular extrusion). HCAE technology is based on principled similar to ECAE, but imposes a larger amount and more effective plastic deformation on materials. The amount of shear deformation can be altered by varying the process parameters. Finite element analyses of HCAE were conducted in order to investigate the characteristics of deformation during HCAE and the simulated results show that the predicted value of imposed plastic strain in a single pass reaches 2.5.

Keywords

References

  1. Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Landon, 1998, The Process of Grain Refinement in Equal-channel Angular Pressing, Acta Mater., Vol. 46, No. 9, pp. 3317-3331. https://doi.org/10.1016/S1359-6454(97)00494-1
  2. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, 1996, Principle of Equal-channel Angular Pressing for the Processing of Ultra-fine Grained Materials, Scr. Mater., Vol. 35, No. 2, pp. 143-146. https://doi.org/10.1016/1359-6462(96)00107-8
  3. K. Nakashima, Z. Horita, M. Nemoto, T. G. Langdon, 2000, Development of a Multi-pass Facility for Equal-channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, Vol. 281, No. 1-2, pp. 82-87. https://doi.org/10.1016/S0921-5093(99)00744-3
  4. Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, 1997, An Investigation of Microstructural Evolution during Equal-Channel Angular Pressing, Acta Mater., Vol. 45, No. 11, pp. 4733-4741. https://doi.org/10.1016/S1359-6454(97)00100-6
  5. P. L. Sun, P. W. Kao, C. P. Chang, 2000, Characteristics of Submicron Grained Structure Formed in Aluminum by Equal Channel Angular Extrusion, Mater. Sci. Eng. A, Vol. 283, No. 1-2, pp. 82-85. https://doi.org/10.1016/S0921-5093(99)00800-X
  6. K. J. Kim, D. Y. Yang, J. W. Yoon, 2008, Investigation of Microstructure Characteristics of Commercially Pure Aluminum during Equal Channel Angular Extrusion, Mater. Sci. Eng. A, Vol. 485, No. 1-2, pp. 621-626. https://doi.org/10.1016/j.msea.2007.08.038
  7. S. C. Yoon, M. H. Seo, H. S. Kim, 2006, Preform Effect on the Plastic Deformation Behavior of Workpieces in Equal Channel Angular Pressing, Trans. Mater. Process., Vol. 15, No. 5, pp. 382-386. https://doi.org/10.5228/KSPP.2006.15.5.382
  8. K. Nakashima, Z. Horita, M. Nemoto, T. G. Langdon, 1998, Influence of Channel Angle on the Development of Ultrafine Grains in Equal-channel Angular Pressing, Acta Mater., Vol. 46, No. 5, pp. 1589-1599. https://doi.org/10.1016/S1359-6454(97)00355-8
  9. Y. G. Jin, I. H. Son, Y. T. Im, 2010, Three-Dimensional Flow Characteristics of Aluminum Alloy in Multi-pass Equal Channel Angular Pressing, Met. Mater. Int., Vol. 16, No. 3, pp. 413-420. https://doi.org/10.1007/s12540-010-0611-9
  10. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, J. A. Szpunar, T. G. Langdon, 2003, Experimental Parameters Influencing Grain Refinement and Microstructural Evolution during High-pressure Torsion, Acta Mater., Vol. 51, No. 3, pp. 753-765. https://doi.org/10.1016/S1359-6454(02)00466-4
  11. Y. Saito, H. Utsunomiya, T. Sakai, R. G. Hong, 1998, Ultra-fine Grained Bulk Aluminum Produced by Accumulative Roll-bonding(ARB) Process, Scr. Mater., Vol. 39, No. 9, pp. 1221-1227. https://doi.org/10.1016/S1359-6462(98)00302-9
  12. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, 1999, Novel Ultra-high Straining Process for Bulk Materials-development of the Accumulative Roll-bonding(ARB) Process, Acta Mater., Vol. 47, No. 2, pp. 579-583. https://doi.org/10.1016/S1359-6454(98)00365-6
  13. N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa, 1999, Ultra-fine Grained Bulk Steel Produced by Accumulative Roll-bonding(ARB) Process, Scr. Mater., Vol. 40, No. 7, pp. 795-800. https://doi.org/10.1016/S1359-6462(99)00015-9
  14. Y. Nishida, H. Arima, J. C. Kim, T. Ando, 2001, Rotary-die Equal-channel Angular Pressing of an Al-7 Mass% Si-0.35 Mass% Mg Alloy, Scr. Mater., Vol. 45, pp. 261-266. https://doi.org/10.1016/S1359-6462(01)00985-X
  15. S. C. Yoon, M. H. Seo, H. S. Kim, 2006, Finite Element Analysis of Continuous Rotary-die Equal Channel Angular Pressing, Trans. Mater. Process., Vol. 15, No. 7, pp. 524-528. https://doi.org/10.5228/KSPP.2006.15.7.524
  16. R. Kocich, M. Greger, M. Kursa, I. Szurman, A. Machackova, 2010, Twist Channel Angular Pressing(TCAP) as a Method for Increasing the Efficiency of SPD, Mater. Sci. Eng., A, Vol. 527, pp. 6386-6392. https://doi.org/10.1016/j.msea.2010.06.057
  17. K. J. Kim, J. W. Yoon, D. Y. Yang, 2009, Development of Ultrafine-grained Aluminum Tubes using Severe Plastic Deformation Process, Trans. Kor. Soc. Mech. Eng., Vol. 33, No. 10, pp. 1087-1090. https://doi.org/10.3795/KSME-A.2009.33.10.1087
  18. K. Laue, H. Stenger, 1981, Extrusion; Processes, Machinery, Tooling, American Society for Metals, Ohio, p. 18.

Cited by

  1. Effects of Processing Routes on the Deformation Behavior of an AZ61 Mg Alloy by Half Channel Angular Extrusion(HCAE) using 3D Finite Element Analysis vol.23, pp.3, 2014, https://doi.org/10.5228/KSTP.2014.23.3.151