References
- AOAC. 1990. Official methods analysis 13th ed. Association of official analytical chemists Washington D.C. USA. p. 125-132.
- Cao, M. X., J.Q. Huang, Z. M. Wei, Q. H. Yao, C. Z. Wan, J. A. Lu. 2004. Engineering higher yield and herbicide resistance in rice by Agrobacteriummediated multiple gene transformation. Crop Sci. 44:2206-2213. https://doi.org/10.2135/cropsci2004.2206
- Culpepper, A. S., A. C. York, R. B. Batts, and K. M. Jennings. 2000. Weed management in glufosinateand glyphosate-resistant soybean (Glycine max). Weed Tech. 14:77-88. https://doi.org/10.1614/0890-037X(2000)014[0077:WMIGAG]2.0.CO;2
- De Block, M., D. De Brouwer, and P. Tenning. 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91:694-701. https://doi.org/10.1104/pp.91.2.694
- Ha, S. B., S. B. Lee, D. E. Lee, J. O. Guh, and K. Back. 2003. Transgenic rice plants expressing Bacillus subtilis protoporphyrinogen oxidase gene show low herbicide oxyfluorfen resistance. Biologia Plantarum 47:277-280.
- Ha, S. B., S. B. Lee, Y. Lee, K. Yang, N. Lee, S. M. Jang, J. S. Chung, S. Jung, Y. S. King, S. G. Wi, and K. Back. 2004. The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ. 27:79-88. https://doi.org/10.1046/j.0016-8025.2003.01127.x
- Han, J., Y. Yang, S. Chen, Z. Wang, X. Yang, G. Wang, and J. Men. 2005. Comparison of nutrient composition of parental rice and rice genetically modified with cowpea trypsin inhibitor in China. J. of Food Composition and Analysis 18:297-302. https://doi.org/10.1016/j.jfca.2004.11.001
- Hashimoto, W., K. Momma, and T. Katsube. 1999. Safety assesment of genetically engineered potatoes with designed soybean glycinin:compositional analyses of the potato tubers and digestibility of the newly expressed protein in transgenic potatoes. J. of Science and Food Agriculture 79:1607-1612. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1607::AID-JSFA408>3.0.CO;2-T
- Jeong, E. G., G. W. Yi, Y. J. Won, H. M. Park, N. S. Cheon, J. H. Choi, Y. C. Ku, C. D. Han, M. Y. Eun, T. S. Kim, and M. H. Nam. 2005. Agronomic characteristics of transgenic japonica rice "Milyang 204" with herbicide resistance gene (bar). Kor. J. Plant Biotechnol. 32:85-90. https://doi.org/10.5010/JPB.2005.32.2.085
- Jung, H. I., Y. I. Kuk, H. Y. Kim, K. Back, D. J. Lee, S. Lee, and N. R. Burgos. 2010. Resistance levels and fitness of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice in paddy fields. Field Crops Research 115:125-131. https://doi.org/10.1016/j.fcr.2009.10.010
- Jung, H. I., Y. I. Kuk, K. Back, and N. R. Burgos. 2008. Resistance pattern and antioxidant enzyme profiles of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice. Pestic. Biochem. Physiol. 91:53-65. https://doi.org/10.1016/j.pestbp.2008.01.005
- Jung, S., Y. Lee, K. Yang, S. B. Lee, S. M. Jang, S. B. Ha, and K. Back. 2004. Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ. 27:1436-1446. https://doi.org/10.1111/j.1365-3040.2004.01247.x
- Kim, K. M., Y. I. Kuk, W. Kim, K. Back, J. O. Guh, and M. S. Shin. 2006. Quality of rice lines transformed with Protox gene of Bacillus subtilis. Korean J. Breed. 38(1):44-50.
- Krausz, R. F., G. Kapusta, J. L. Matthews, J. L. Baldwin, and J. Maschoff. 1999. Evaluation of glufosinate-ammonium-resistant corn (Zea mays) and glufosinate-ammonium:Efficacy on annual weeds. Weed Tech. 13:691-696. https://doi.org/10.1017/S0890037X00042093
- Kuk, Y. I., J. S. Shin, Y. B. Yun, and O. D. Kwon. 2010. Mechanism of growth inhibition in herbicideresistant transgenic rice overexpressing protoporphyrinogen oxidase (Protox) gene. Korean J. Weed Sci. 30(2):122-134. https://doi.org/10.5660/KJWS.2010.30.2.122
- Kwon O. D., B. Y. Moon, Y. I. Kuk, J. K. Kim and H. Y. Kim. 2006. Effect of densities of Echinochloa crus-galli and Monochoria vaginalis in wet seeding transplanting rice cultivation on rice yield and rice quality, and economic threshold levels of the weeds. Korean J. Weed Sci. 26(2):155-167.
- Kwon O. D., Y. I. Kuk, S. H. Cho and B. Y. Moon. 2007. Effect of densities of Echinochloa crus-galli and Cyperus difformis in transplanting rice cultivation on rice yield and rice quality, and economic threshold levels of the weeds. Korean J. Weed Sci. 27(2):102-111.
- Lee, Y., S. Jung, and K. Back. 2004. Expression of human protoporphyrinogen oxidase in transgenic rice induces both a photodynamic response and oxyfluorfen resistance. Pestic. Biochem. Physiol. 80: 65-74.
- Li, X., X. Y. He, Y. B. Luo, G. Y. Xiao, X. B. Jiang, and K. L. Huang. 2008. Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart. J. of Food Composition and Analysis. 21: 535-539. https://doi.org/10.1016/j.jfca.2008.06.001
- Oard, J. H., S. D. Linscombe, M. P. Braverman, F. Jodari, D. C. Blousin, M. Leech, A. Kohli, P. Vain, J. C. Cooley, and P. Christou. 1996. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol. Breed. 2:359-368. https://doi.org/10.1007/BF00437914
- Oberdoerfer, R. B., R. D. Shillito, M. De Beuckeleer, and D. H. Mitten. 2005. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J. Agric. Food Chem. 53:1457-1465. https://doi.org/10.1021/jf0486500
- Ohara, I. and S. Ariyoshi. 1979. Comparison of protein precipitants for the determination of free amino acid in plasma. Agric. Biol. Chem. 43:1473-1478. https://doi.org/10.1271/bbb1961.43.1473
- Padgette, S. R., N. B. Taylor, D. L. Nilda, M. R. Bailey, et al. 1996. The composition of glyphosatetolerant soybean seeds is equivalent to that of conventional soybeans. Journal of Nutrition. 126: 702-716. https://doi.org/10.1093/jn/126.3.702
- [SAS] Statistical Analysis System. 2000. SAS/STAT Users Guide, Version 7. Cary, NC:Statistical Analysis Systems Institute, Electronic Version.
- Savarni, T. J., Y. Suzuki, J. B. Carr, G. T. McQuate, S. A. Ferreira, R. M. Manshardt, K. Y. Pitz. M. M. Wall, and D. Gonsalves. 2011. Nutritional composition of rainbow papaya, the first commercialized transgenic fruit crop. J. of Food Composition and Analysis. 24:140-147.
- Wilson, A. M., T. M. Work, A. A. Bushway. and R. J. Bushway. 1981. HPLC determination of fructose, glucose and sucrose in potatoes. J. Food Sci. 46:300-306. https://doi.org/10.1111/j.1365-2621.1981.tb14589.x
- Woo, S. J. and S. S. Ryoo. 1983. Preparation methods for atomic absorption and spectrophotometry of food samples. Korean J. Food Sci. Technol.. 15:225-231.
- Zhe, J., J. Deng, G. Li, Z. Zhang, and Z. Cai. 2010. Study on the compositional differences between transgenic and non-transgenic papaya (Carica papaya L.). J. of Food Composition and Analysis. 23:640-647. https://doi.org/10.1016/j.jfca.2010.03.004
- 조동삼. 1995. 벼의 생리와 생태. 향문사. pp. 335-349.
Cited by
- Regional Comparison of Physiochemical Properties of Codonopsis lanceolata vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.248
- Comparison of Growth Characteristics and Inorganic Components Between Korean and Japanese Codonopsis lanceolata vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.253
- Difference in Physiological Responses to Environmental Stress in Protox Inhibitor Herbicide-Resistant Transgenic Rice and Non-transgenic Rice vol.32, pp.1, 2012, https://doi.org/10.5660/KJWS.2012.32.1.35