DOI QR코드

DOI QR Code

토지이용도, RUSLE, 그리고 산사태 위험도를 이용한 낙동강유역의 토양 침식에 대한 위험성 및 잠재성 분석

Risk Assessment and Potentiality Analysis of Soil Loss at the Nakdong River Watershed Using the Land Use Map, Revised Universal Soil Loss Equation, and Landslide Risk Map

  • 지운 (명지대학교 토목환경공학과) ;
  • 황만하 (한국수자원공사 수자원연구원) ;
  • 여운광 (국립방재연구원) ;
  • 임광섭 (한국수자원공사 수자원연구원)
  • Ji, Un (Dept. of Civil & Environmental Eng, Myongji University) ;
  • Hwang, Man-Ha (Water Resource Research Center, Korea Water Resource Corporation) ;
  • Yeo, Woon-Kwang (National Disaster Management Institute) ;
  • Lim, Kwang-Suop (Water Resource Research Center, Korea Water Resource Corporation)
  • 투고 : 2011.08.08
  • 심사 : 2012.04.04
  • 발행 : 2012.06.30

초록

본 연구에서는 낙동강유역을 대상으로 토양 침식 및 유실의 위험성을 분석 및 평가하기 위해 토지이용도를 세부적으로 분석하여 유역별 토양침식 발생의 위험성을 순위화하였다. 또한, 토양침식량을 RUSLE 모형을 이용하여 산정하였고 토지이용도 분석 결과와 함께 토양침식 위험성이 높은 유역을 평가하였다. 최종적으로 해당 유역에 산사태 위험지도와의 비교를 통해 유역내 토양유실 대책 수립을 위한 자료의 활용 방안을 분석하였다. 분석 결과, 전체 낙동강유역내 토양침식 위험성이 높은 것으로 선정된 유역은 내성천유역으로 토지이용도 분석결과와 RUSLE 모형의 결과에서 모두 토양유실 측면에서 위험성이 높은 것으로 나타났다. RUSLE 모형 결과에서 토양침식량이 높은 것으로 나타난 지역과 산사태 위험지역의 분포는 유사한 것으로 나타났으나, 하천 주변의 토지이용에 따른 토양유실의 위험성은 RUSLE를 이용한 산정 결과에서만 확인할 수 있었다.

The land use map of the Nakdong River watershed was classified by each land use contents and analyzed to rank the risk of soil loss and erosion. Also, the soil loss and erosion was evaluated in the Nakdong River watershed using Revised Universal Soil Loss Equation (RUSLE) and the subbasin with high risk of soil loss was evaluated with the analysis results of land use contents. Finally, the analyzed results were also compared with the landslide risk map, hence the practical application methods using developed and analyzed results were considered in this study. As a result of land use analysis and RUSLE calculation, it was represented that the Naesung Stream watershed had the high risk for soil loss among the subbasins of the Nakdong River watershed. It was also presented that the high risk area identified by computation of RUSLE was corresponding to the landslide risk area. However, the high risk of soil erosion by land use near the river or wetland was confirmed only through the calculation results of RUSLE.

키워드

참고문헌

  1. 건설교통부 (1992). 댐설계를 위한 유역단위 비유사량 조사 연구.
  2. 곽동욱 (2007). GIS를 이용한 댐유역 토사유실 원인지역 선정 연구. 석사학위논문, 전북대학교.
  3. 권형중, 박근애, 김성준(2002). "GIS 및 다시기 RS 자료를 이용한 토양침식량 변화 및 이동경로 추정." 한국GIS학회, Vol. 10, No. 1, pp. 151-163.
  4. 국가수자원관리 종합정보시스템(WAMIS). www.wamis.go.kr.
  5. 국립방재연구소 (1998). 개발에 따른 토사유출량 산정에 관한연구(1).
  6. 국토해양부 (2009). 낙동강유역종합치수계획(보완) 보고서.
  7. 김남신 (2010). 지리정보활용 : ArcGIS를 이용한 자료관리와 공간분석, 한울, p. 316.
  8. 박경훈(2003). "GIS 및 RUSLE 기법을 활용한 금호강 유역의 토양침식위험도 평가." 한국지리정보학회지, 한국지리정보학회, 제6권, 제4호, pp. 24-36.
  9. 박무종, 김양수 (2001). "개발지역에서의 토사발생규모와 모형의 적용성 연구." 한국수자원학회논문집, 한국수자원학회, Vol. 34, No. 3, pp. 3-18.
  10. 산사태위험지 관리시스템, http://sansatai.forest.go.kr.
  11. 산업자원부 (2008), 산사태재해 예측및 저감기술 개발, pp. 453-456.
  12. 송성태 (2006). GIS 및 RUSLE 모형을 이용한 가야산 국립공원의 토양침식 위험지역 연구, 석사학위논문, 대구대학교.
  13. 신계종 (2001). "토양유실인자가 적용된 GIS를 이용한 산사태분석." 산업과학기술연구소 논문집, Vol. 9, pp. 289-303.
  14. 오정학, 정성관 (2005). "토지자원관리를 위한 낙동강 유역의 잠재적 토양유실량 산정." 한국농촌계획학회 농촌계획, 제11권, 제2호, pp. 9-19.
  15. 이근상 (2006). "GIS 공간분석을 이용한 안동 임하호 유역의 토사유실 비교 평가." 대한토목학회논문집, 대한토목학회, 제26권, 제2D호, pp. 341-347.
  16. 한국건설기술연구원 (2010). 신설 보를 고려한 유역분할, 한국건설기술연구원.
  17. Boyce, R.C. (1975). "Sediment routing with sediment delivery ratios." In present and prospective technology for predicting sediment yields and sources, ARS-S-40, USDA-ARS.
  18. Gupta, H.S. (2001). "Terrain evaluation for eco-restoration using remote sensing and GIS." Conference on GIScience, AGILE, session 7 Environmental modelling and remote sensing.
  19. Hammad, A.A. (2011). "Watershed erosion risk assessment and management utilizing revised universal soil loss equation-geographic information systems in the Mediterranean environments." Water and Environment Journal, Vol. 25, Issue 2, pp. 149-162. https://doi.org/10.1111/j.1747-6593.2009.00202.x
  20. Nicklow, J.W., Muleta, M.S. (2001). "Watershed management technique to control sediment yield in agriculturally dominated areas." Water International, Vol. 26, No. 3, pp. 435-443. https://doi.org/10.1080/02508060108686935
  21. Owens, P.N., and Collins, A.J. (2006). Soil erosion and sediment redistribution in river catchments: measurement, modelling and management. CABI, UK. pp. 177-185.
  22. Sharifi, A., Kalin, L. (2010). "Effect of land use uncertainty on watershed modeling." World Environmental and Water Resources Congress, Vol. 6, pp. 4730-4739.
  23. Toxopeus, A.G. (1996). ISM: An interactive spatial and temporal modeling system as a tool in ecosystem management, Ph.D. Thesis, ITC.
  24. USACE (2007). St. Joseph river sediment transport modeling study, U.S. Army Corps of Engineers Detroit District, USA.
  25. Wischmeier, W.H., Smith, D.D. (1978). "Predicting rainfall erosion losses-a guide th conservation planning." Agriculture Handbook, USDA, Washington D.C. p. 58.

피인용 문헌

  1. Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River vol.48, pp.9, 2015, https://doi.org/10.3741/JKWRA.2015.48.9.695
  2. Risk assessment of watershed erosion at Naesung Stream, South Korea vol.136, 2014, https://doi.org/10.1016/j.jenvman.2014.01.033
  3. Sensitivity Analysis and Parameter Evaluation of a Distributed Model for Rainfall-Runoff-Soil Erosion-Sediment Transport Modeling in the Naesung Stream Watershed vol.47, pp.12, 2014, https://doi.org/10.3741/JKWRA.2014.47.12.1121