• Title/Summary/Keyword: 수정범용토양침식공식

Search Result 8, Processing Time 0.023 seconds

The Determination of Resolution for Quantification of Soil Loss in GIS Environment (GIS 기반에서 토양침식의 정량화를 위한 해상도 결정에 관한 연구)

  • 장영률;이근상;조기성
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.301-316
    • /
    • 2002
  • Soil Loss by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. Also, validity pondage of reservoir or dam is decreased by rivers inflow of eroded soil. Revised Universal Soil Loss Equation(RUSLE) is mainly used to presume soil loss amount of basin using GIS. But, because comparison with survey data is difficult, it is no large meaning that estimate calculated soil loss amount as quantitative. This research used unit sediment deposit survey data of Bo-seong basin for quantitative conclusion of soil loss amount that calculate on RUSLE. Through comparison examination with unit sediment yield that calculate on RUSLE and unit sediment deposit survey data, we can estimate resolution far RUSLE Model. As a result, cell size of 150m was estimated by thing which is most suitable.

  • PDF

The Analysis of Optimum Resolution with Different Scale of Soil Map for the Calculation of Soil Loss (토양침식량 산정에서 토양도 축척에 따른 적정 해상도 분석에 관한 연구)

  • Lee, Greun-Sang;Jang, Young-Ryul;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • RUSLE(revised universal soil loss equation) has been widely used for estimating soil loss. It is very difficult to validate the model estimation since the calculated soil loss should be compared with the survey data for quantification. The input variables for RUSLE model were estimated to grid cell for raster analysis in Bosung basin. Both reconnaissance(1:250,000) and detailed(1:25,000) soil maps were used to derive the input variables for soil erodibility factor. Soil loss calculated using RUSLE were compared to the unit sediment deposit surveyed by KICT(Korea Institute of Construction Technology, 1992) in Bosung basin for assessment. Unit sediment deposit from the cell size of 120m and 150m were the closest to the survey data in 1:250,000 and 1:25,000 map scale, respectively.

  • PDF

Evaluation of GIS-based Soil Loss Amount in Considering Basin Characteristics (유역특성을 고려한 GIS 기반 토양침식량 평가)

  • Guak Dong-Wook;Cho Gi-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.89-97
    • /
    • 2006
  • Soil erosion has caused serious environmental problems which threaten the foundation of natural resources. In this paper, we chose RUSLE erosion model, which could be connected easily with GSIS and available generally in mid-scale watershed among soil erosion models, and extracted factors entered model by using GSIS spatial analysis method. First, this study used GIS database as soil map, DEM, land cover map and rainfall data of typhoon Memi (2003) to analyze soil loss amount of Dam basin. To analyze the changes of soil loss in considering basin characteristics as up-, mid- and downstream, this study calculated soil erodibility factor (K), topographic factors (LS), and cover management factor (C). As a result of analysis, K and LS factors of upstream showed much higher than those of downstream because of the high ratio of forest. But C factor of downstream showed much higher than that of upstream because of the high ratio of agricultural area. As a result of analysis of soil loss, unit soil loss of upstream is 4.3 times than soil loss of downstream. Therefore, the establishment of countermeasures for upstream is more efficient to reduce soil loss.

Soil Erosion Risk Assessment of the Geumho River Watershed using GIS and RUSLE Methods (GIS 및 RUSLE 기법을 활용한 금호강 유역의 토양침식위험도 평가)

  • Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.24-36
    • /
    • 2003
  • This study integrates the revised universal soil loss equation(RUSLE) with a grid-based GIS method to assess the potential risk of soil erosion at the watershed scale. Data used in this study to generate the RUSLE factors include several thematic maps such as land use, topographic and soil maps, together with tabular precipitation data. Based on the RUSLE estimation for all the grids(10m cells) in the corresponding watershed, a cumulative histogram for the annual soil loss can be constructed. As the results, it shows that the 83.5% value of the annual soil loss for the watershed is less than 1ton/ha. However, the above 30% of agricultural land is defined as a medium or very high-risk area(more than 10ton/ha/yr). So it is necessary to establish soil conservation practices to reduce soil erosion based on the field observations.

  • PDF

Risk Assessment and Potentiality Analysis of Soil Loss at the Nakdong River Watershed Using the Land Use Map, Revised Universal Soil Loss Equation, and Landslide Risk Map (토지이용도, RUSLE, 그리고 산사태 위험도를 이용한 낙동강유역의 토양 침식에 대한 위험성 및 잠재성 분석)

  • Ji, Un;Hwang, Man-Ha;Yeo, Woon-Kwang;Lim, Kwang-Suop
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.617-629
    • /
    • 2012
  • The land use map of the Nakdong River watershed was classified by each land use contents and analyzed to rank the risk of soil loss and erosion. Also, the soil loss and erosion was evaluated in the Nakdong River watershed using Revised Universal Soil Loss Equation (RUSLE) and the subbasin with high risk of soil loss was evaluated with the analysis results of land use contents. Finally, the analyzed results were also compared with the landslide risk map, hence the practical application methods using developed and analyzed results were considered in this study. As a result of land use analysis and RUSLE calculation, it was represented that the Naesung Stream watershed had the high risk for soil loss among the subbasins of the Nakdong River watershed. It was also presented that the high risk area identified by computation of RUSLE was corresponding to the landslide risk area. However, the high risk of soil erosion by land use near the river or wetland was confirmed only through the calculation results of RUSLE.

Analysis of Soil Erosion Hazard Zone by R Factor Frequency (빈도별 R인자에 의한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 2004
  • The purpose of this study is to estimate soil loss amount according to the rainfall-runoff erosivity factor frequency and to analyze the hazard zone that has high possibilities of soil erosion in the watershed. RUSLE was used to analyze soil loss quantity. The study area is Gwanchon that is part of Seomjin river basin. To obtain the frequency rainfall-runoff erosivity factor, the daily maximum rainfall data for 39 years was used. The probability rainfall was calculated by using the Normal distribution, Log-normal distribution, Pearson type III distribution, Log-Pearson type III distribution and Extreme-I distribution. Log-Pearson type III was considered to be the most accurate of all, and used to estimate 24 hours probabilistic rainfall, and the rainfall-runoff erosivity factor by frequency was estimated by adapting the Huff distribution ratio. As a result of estimating soil erosion quantity, the average soil quantity shows 12.8 and $68.0ton/ha{\cdot}yr$, respectively from 2 years to 200 years frequency. The distribution of soil loss quantity within a watershed was classified into 4 classes, and the hazard zone that has high possibilities of soil erosion was analyzed on the basis of these 4 classes. The hazard zone represents class IV. The land use area of class IV shows $0.01-5.28km^2$, it ranges 0.02-9.06% of total farming area. Especially, in the case of a frequency of 200 years, the field area occupies 77.1% of total fanning area. Accordingly, it is considered that soil loss can be influenced by land cover and cultivation practices.

  • PDF

Analysis of Soil Erosion Hazard Zone by Cropland (농경지 토양침식 위험지역 분석)

  • Kim, Kyung-Tak;Kim, Joo-Hun
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.107-117
    • /
    • 2005
  • Soil erosion is influenced from a variety of factors such as rainfall distribution, soil type, land use, etc. This paper is aimed at analyzing the soil erosion hazard zone in cropland. RUSLE was used for an analysis of soil erosion amount, and for the spatial data of basin, soil erosion amount was calculated by extracting the respect topography space related factors of RUSLE using DEM, Landuse, Soil map as base map. This paper is targeting at the watershed of Gyeongan stream in Gyeonggi-do The result of an analysis of soil erosion amount showed that soil erosion occurred in the order of crop field(1210) planting area, orchard(1220), non-adjusted paddy fields(1120), and adjusted paddy fields(1110), and also the average soil erosion in these planting areas has the most amount in crop field planting area. As a result of analysis on soil erosion hazard zone of farm land by classifying it into 5 classes using the result of that result of analysis on the amount of soil erosion, in case of Class 5 in which the hazard of soil erosion is the highest, approximately 72.5ha that corresponds to 2.4% of the total farm land was decided as erosion hazard zone. For this erosion hazard zone, it was analyzed that dry field crop planting area was 72.4ha and orchard was 0.1ha, and Class 5 hazard zone did not appear in other farming areas. Also, it showed that Class II(1~50ton/ha/yr) area had the most ratio of the entire farm land, i.e., 70.2%, regardless of land use state. According to the result of analysis on soil erosion hazard zone of farm land by classifying it into 5 classes, the Class V has the highest soil erosion hazard, approximately 72.5ha that corresponds to 2.4% of the total farm land was estimated as an erosion hazard zone. This erosion hazard shows 72.4ha in dry field crop planting area, 0.1ha in an orchard, but the highest hazard zone, the Class V was not shown in other farming areas. Also, it showed that Class II area had the most ratio of the entire farm land, i.e., 70.2%, regardless of land use state.

  • PDF

Estimation of the Amount of Soil toss and Main Sources of Riverbed Sediments in Each Tributary Basin of the Seomjin River in Sunchang Area, Korea (순창지역 섬진강 지류별 토양유실량 산정과 하상퇴적물의 주공급원에 관한 고찰)

  • Kwak Jae-Ho;Yang Dong-Yoon;Lee Hyun-Koo;Kim Ju-Yong;Lee Seong-Gu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.607-622
    • /
    • 2005
  • This study was carried out in order to evaluate where the soil loss was mainly occurred, .and to verify how riverbed sediments in the tributaries of the Seomjin River were related to their source rocks distributed in Sunchang area. The study area including the Seomjin River with 4 tributaries of Kyeongcheon, Okgwacheon, Changjeong-cheon and Ipcheon was divided into 10 watershed. The RUSLE (Revised Universal Soil Loss Equation) was estimated for all the grids (10 m cells) in the corresponding watershed. The amount of soil loss per unit area was calculated as follows: dry fold (53,140.94 tons/ha/year), orchard (25,063.38 tons/ha/year), paddy field (6,506.7 tons/ha/year) and Idlest (6,074.36 tons/ha/year). The differences of soil loss per unit area appear to be depends on areas described earlier. Soil erosion hazard zones were generally distributed within dry fields. Several thematic maps such as land use maps, topographical maps and soil maps were used as a data to generate the RUSLE factors. The amount of soil loss, computed by using the RUSLE, showed that soil loss mainly occurred at the regions where possible source rocks were distributed along the stream. Based on the this study on soil loss and soil erosion hazard zone together with chondrite-normalized REE patterns that were previously analyzed in same study area, a closed relationship between riverbed sediments and possible source rocks is formed. Especially in the Okgwacheon that are widely distributed by various rocks, chondrite-normalized REE pattern derived from the riverbed sediments, source rock and soil is expected to have a closed relationship with the distribution of soil loss.