참고문헌
- R. P. Agarwal, Y. J. Cho and N. J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett. 13(6) (2000), 19-24.
- R. . Agarwal, N. J. Huang and Y. J. Cho, Generalized nonlinear mixed implicit quasi-variational inclusions with setvalued mappings, J. Inequal. Appl. 7(6) (2002), 807-828.
- R. Ahmad, A. H. Siddiqi and Z. Khan, Proximal point algorithm for generalized multivalued nonlinear quasivariational- like inclusions in Banach spaces, Appl. Math. Comput. 163 (2005), 295-308. https://doi.org/10.1016/j.amc.2004.02.021
- S. S. Chang, Y. J. Cho and H. Y. Zhou, Iterative Methods for Nonlinear Operator Equations in Banach Spaces, Nova Sci. New York, 2002.
- J. Y. Chen, N. C. Wong and J. C. Yao, Algorithm for generalized co-complementarity problems in Banach spaces, Comput. Math. Appl. 43(1) (2002), 49-54. https://doi.org/10.1016/S0898-1221(01)00270-X
- X. P. Ding and C. L. Lou, Perturbed proximal point algorithms for general quasi-variational-like inclusions, J. Comput. Appl. Math. 210 (2000), 153-165.
-
J. Lou, X. F. He and Z. He, Iterative methods for solving a system of variational inclusions involving H-
${\eta}$ -monotone operators in Banach spaces, Computers and Mathematics with Applications, Computers and Mathematics with Applications 55 (2008), 1832-1841. https://doi.org/10.1016/j.camwa.2007.07.010 - X. F. He, J. Lou and Z. He, Iterative methods for solving variational inclusions in Banach spaces, Journal of Computational and Applied Mathematics 203(1) (2007), 80-86. https://doi.org/10.1016/j.cam.2006.03.011
-
R. Ahmad and A. H. Siddiqi, Mixed variational-like inclusions and
$J^{\eta}$ -proximal operator equations in Banach spaces, J. Math. Anal. Appl. 327 (2007), 515-524. https://doi.org/10.1016/j.jmaa.2006.04.054 - N. J. Huang, Generlaized nonlinear variational inclusions with non-compact valued mappings, Appl. Math. Lett. 9(3) (1996), 25-29.
- Y. P. Fang and N. J.Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647-653. https://doi.org/10.1016/S0893-9659(04)90099-7
-
K. R. Kazmi and F. A. Khan, Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-
${\eta}$ -accretive mappings, J. Math. Anal. Appl. 337 (2008), 1198-1210. https://doi.org/10.1016/j.jmaa.2007.01.115 - S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
-
H. Y. Lan, (
$A,{\eta}$ )-Accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces, Appl. Math. Lett. 20 (2007), 571-577. https://doi.org/10.1016/j.aml.2006.04.025