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PROXIMAL POINTS METHODS FOR GENERALIZED

IMPLICIT VARIATIONAL-LIKE INCLUSIONS

IN BANACH SPACES

Xin-feng He, Jian Lou and Zhen He

Abstract. In this paper, we study generalized implicit variational-like

inclusions and Jη-proximal operator equations in Banach spaces.It is es-
tablished that generalized implicit variational-like inclusions in real Ba-

nach spaces are equivalent to fixed point problems.We also establish a

relationship between generalized implicit variational-like inclusions and
Jη-proximal operator equations. This equivalence is used to suggest an

iterative algorithm for solving Jη-proximal operator equations.

1. Introduction

Variational inclusion problems are among the most interesting and inten-
sively studied classes of mathematical problems and have wide applications in
the fields of optimization and control, economics and transportation equilib-
rium, engineering science. For the past few years, many existence results and
iterative algorithms for various variational inequality and variational inclusion
problems have been studied. For details, please see [1-8] and the references
therein.

The resolvent operator techniques for solving variational inequalities and
variational inclusions are interesting and important. The resolvent operator
technique is used to establish an equivalence between mixed variational in-
equalities and resolvent equations. The resolvent equation technique is used
to develop powerful and efficient numerical techniques for solving mixed varia-
tional inequalities and related optimization problems.

In this paper, we generalize the resolvent equations by introducing Jη-
proximal operator equations in Banach spaces. A relationship between gener-
alized implicit variational-like inclusions and Jη- proximal operator equations
is established. We propose an iterative algorithm for computing the approxi-
mate solutions which converge to the exact solutions of Jη-proximal operator
equations.
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2. Jη-proximal-point mapping

Throughout this paper, we assume that E is a real Banach space with dual
space E∗; CB(E) (respectively, 2E) is the family of all nonempty closed and
bounded subsets (respectively, all nonempty subsets) of E; H(·, ·) is the Haus-
dorff metric on CB(E) defined by

H(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)} A,B ∈ CB(E);

〈·, ·〉 is the dual pair between E and E∗, and J : E → 2E
∗

is the normalized
duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖} x ∈ E.
We observe immediately that if E ≡ H, a Hilbert space, then J is the identity
map on H.

First, we define the following concepts.
Definition 2.1.([8]) Let η : E × E → E be a mapping.Then a mapping
P : E → E∗ is said to be

(1) η-monotone, if

〈Px− Py, η(x, y)〉 ≥ 0, ∀x, y ∈ E;

(2) strictly η-monotone, if

〈Px− Py, η(x, y)〉 ≥ 0, ∀x, y ∈ E
and equality holds if and only if x = y;

(3) strongly η-monotone, if ∃r > 0 such that

〈Px− Py, η(x, y)〉 ≥ r‖x− y‖2, ∀x, y ∈ E.
Definition 2.2.([8]) A mapping η : E × E → E is said to be τ -Lipschitz
continuous, if ∃τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ E.
Definition 2.3.([7]) A mapping T : E → E∗ is called γ-cocoercive if for
all x, y ∈ E, there exists a constant γ > 0, such that 〈Tx − Ty, η(x, y)〉 ≥
−γ‖Tx− Ty‖2.
Definition 2.4.([14]) A mapping T : E → E is called relaxed (γ, r)-cocoercive
if for all x, y ∈ K, there exists constants γ > 0, r > 0, j(x− y) ∈ J(x− y), such
that

〈Tx− Ty, j(x− y)〉 ≥ −γ‖Tx− Ty‖2 + r‖x− y‖2.
The class of relaxed (γ, r)-cocoercive mappings is more general than the class
of strongly accretive mappings.
Definition 2.5.([8]) Let M : E → 2E

∗
be a multivalued operator. P : E → E∗,

η : E × E → E be single-valued operator. M is said to be:
(1) monotone if

〈u− v, x− y〉 ≥ 0; ∀x, y ∈ E, u ∈Mx, v ∈My;
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(2) η−monotone if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ E, u ∈Mx, v ∈My;

(3) strongly η−monotone if there exists some constant r > 0, such that

〈u− v, η(x, y)〉 ≥ r‖x− y‖2, ∀x, y ∈ E, u ∈Mx, v ∈My;

(4) m-relaxed η-monotone if there exists some constant m > 0, such that

〈u− v, η(x, y)〉 ≥ −m‖x− y‖2, ∀x, y ∈ E, u ∈Mx, v ∈My;

(5) maximal monotone if M is monotone and has no a proper monotone
extension in E, i.e. for all u, v0 ∈ E , u ∈Mx,

〈u− v0, x− y0〉 ≥ 0

implies v0 ∈My0.
When E is reflexive Banach space, M is maximal monotone if and only if

(J + λM)E = E∗, for all λ > 0.
(6) maximal η−monotone if M is η−monotone and has no a proper η−

monotone extension in E.
(7) P−monotone if M is monotone and (P + λM)E = E∗, for all λ > 0; if

M is η−monotone and (P + λM)E = E∗, for all λ > 0, then M is said to be
(P, η)−monotone operators.

(8) P -η-monotone if M is m-relaxed η-monotone and (P +λM)E = E∗, for
all λ > 0.

In [7] we introduced the following results.

Theorem 2.1. Let E be a real Banach space η : E × E → E be a τ -Lipschitz
continuous operator , Let P : E → E∗ be a strongly η−monotone operator with
constants r > 0, M : E → 2E

∗
be a multivalued P-η-monotone operator. Then,

the mapping (P + ρM)−1 : E∗ → E is single-valued Lipschitz continuous with
constant τ

r−mρ for 0 < ρ < r
m , that is,

‖(P +ρM)−1(u)− (P +ρM)−1(v)‖ ≤ τ

r −mρ
‖u−v‖, ∀u, v ∈ X∗.

By Theorem 2.1, we can define P -η-proximal point mapping (or the resolvent
operator) for a P -η-monotone mapping M as follows:

JMρ (z) = (P + ρM)−1(z), ∀z ∈ E,

where 0 < ρ < r
m is a constant, η : E × E → E is a mapping and P : E → E∗

be a strongly η−monotone mapping with constant r > 0.
Remark 2.1. P -η-proximal-point mapping generalize the corresponding con-
cepts given by Kazmi [12] and Fang and Huang [11].
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3. Multi-valued variational-like inclusion and iterative algorithm

Let T,A,B : E → CB(E∗) be set-valued mappings. Let N : E∗×E∗×E∗ →
E∗, f : E → E∗, η : E × E → E , M : E × E → E∗ and g : E → E
be single-valued mappings. Assume that g(E) ∩ dom(M(·, x)) 6= ∅. Let ϕ :
E ×E → R ∪ {+∞} be such that for each fixed x ∈ E, ϕ(·, x) is a lower semi-
continuous, η-subdifferentiable functional on E (may not be convex) satisfying
g(E)∩dom(∂ηϕ(·, x)) 6= ∅, where ∂ηϕ(·, x) is the η-subdifferential of ϕ(·, x).(see
[9]) We consider the following generalized implicit variational-like inclusion
problems in Banach spaces (for short GIVLIP): find x ∈ E,u ∈ T (x), v ∈
A(x), w ∈ B(x) such that

f(x) ∈ N(u, v, w) +M(g(x), x). (3.1)

Special cases of GIVLIP (3.1):
(1) If we given single-valued mappings P, f, h : E → E∗, g : E → E, η :

E ×E → E and multivalued mappings M,S, T : E → CB(E∗). Then problem
(3.1) reduces to the following mixed variational-like inclusion introduced by R.
Ahmad and A.H. Siddiqi [9]. Find x ∈ E, u ∈M(x), v ∈ S(x), w ∈ T (x) such that g(x) ∈ dom(∂ηϕ)

and
〈P (u)− (f(v)− h(w)), η(y, g(x))〉 ≥ ϕ(g(x))− ϕ(y), for all y ∈ E.

(3.2)
(2) If η(x.y) + η(y, x) = 0,M(·, x) = ∂ηϕ(·, x) such that R(P +λ∂ηϕ(·, x)) =

E∗,then problem (3.1) is equivalent to the following Find x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ B(x) such that g(x) ∈ dom(∂ηϕ(·, x))
and
〈f(x)−N(u, v, w), η(y, g(x))〉 ≥ ϕ(g(x), x)− ϕ(y, x), for all y ∈ E.

(3.3)
(3) If N(u, v, w) = N(u, v), for all u, v, w ∈ E, then problem (3.1) is equiv-

alent to the following generalized multivalued nonlinear quasi-variational-like
inclusions in Banach spaces: Find x ∈ E, u ∈ T (x), v ∈ A(x), such that g(x) ∈ dom(∂ηϕ(·, x))

and
〈f(x)−N(u, v), η(y, g(x))〉 ≥ ϕ(g(x), x)− ϕ(y, x), for all y ∈ E.

(3.4)

Problem (3.4) is introduced and studied by Ahmad et al.[3].
(4) If E = H, is a Hilbert space, f(x) ≡ 0, N(u, v, w) = u − v, for all

u, v, w ∈ H and T,A : H → H are both single-valued mappings, then problem
(3.1) reduces to the following general quasi-variational-like inclusion problem
introduced by Ding and Lou [6]. Find x ∈ H, such that g(x) ∈ dom(∂ηϕ(·, x))

and
〈T (x)−A(x), η(y, g(x))〉 ≥ ϕ(g(x), x)− ϕ(y, x), for all y ∈ E.

(3.5)
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(5) If E = H is a Hilbert space, η(y, x) = y − x for all y, x ∈ H, and
f(x) ≡ 0, N(u, v, w) = f(u) − P (v) for all u, v, w ∈ H, where f, P : H → H
are single-valued mappings and ϕ(x, y) = ϕ(x) for all x, y ∈ H, then problem
(3.1) reduces to the following problem: Find x ∈ H,u ∈ T (x), v ∈ A(x) such that

and
〈f(u)− P (v), (y − g(x))〉 ≥ ϕ(g(x), x)− ϕ(y, x), for all y ∈ E.

(3.6)

Problem (3.6) is called the set-valued nonlinear generalized variational inclusion
problem which was introduced by Huang [10]. From the above special cases,
it is clear that for a suitable choice of the maps involved in the formulation
of (GIVLIP), we can drive many known variational inclusions considered and
studied in the literature.

In connection with (GIVLIP), we consider the following J
M(·,x)
ρ -proximal

operator equation problem (J
M(·,x)
ρ -POEP):

(JM(·,x)
ρ −POEP)

{
Find z ∈ E∗, u ∈ T (x), v ∈ A(x), w ∈ B(x) such that

N(u, v, w)− f(x) + ρ−1R
M(·,x)
ρ (z) = 0,

(3.7)

where ρ > 0 is a constant,J
M(·,x)
ρ = (P + ρM(·, x))−1, R

M(·,x)
ρ (z) = [I −

PJ
M(·,x)
ρ ](z), where P [J

M(·,x)
ρ (z)] = [P (J

M(·,x)
ρ )](z) and I is the identity map-

ping in E∗. Equation (3.7) is called J
M(·,x)
ρ -proximal operator equation.

Assume that dom(P ) ∩ g(E) 6= ∅. The following lemma which will be used

in the sequel, is an immediate consequence of the definition of J
M(·,x)
ρ .

Lemma 3.1. Let (x, u, v, w), where x ∈ E, u ∈ T (x), v ∈ A(x) and w ∈ B(x),
is a solution of (GIVLIP) if and only if it is a solution of the following equation:

g(x) = JM(·,x)
ρ {P (g(x))− ρ[N(u, v, w)− f(x)]}. (3.8)

Now, we show that the (GIVLIP) is equivalent to the (J
M(·,x)
ρ -POEP).

Lemma 3.2. The (GIVLIP) has a solution (x, u, v, w) with x ∈ E, u ∈ T (x), v ∈
A(x) and w ∈ B(x) if and only if (J

M(·,x)
ρ -POEP) has a solution (z, x, u, v, w)

with z ∈ E∗, x ∈ E, u ∈ T (x), v ∈ A(x) and w ∈ B(x) , where

g(x) = JM(·,x)
ρ (z) (3.9)

and

z = P (g(x))− ρ[N(u, v, w)− f(x)].

Proof. Let (x, u, v, w) be a solution of (GIVLIP). Then by Lemma 3.1, it is a
solution of the following equation:

g(x) = JM(·,x)
ρ {P (g(x))− ρ[N(u, v, w)− f(x)]},
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using the fact R
M(·,x)
ρ = I − PJM(·,x)

ρ , and Eq. (3.8), we have

RM(·,x)
ρ {P (g(x))− ρ[N(u, v, w)− f(x)]}

= P (g(x))− ρ[N(u, v, w)− f(x)]

− P [JM(·,x)
ρ ]{P (g(x))− ρ[N(u, v, w)− f(x)]}

= P (g(x))− ρ[N(u, v, w)− f(x)]− P (g(x))

= −ρ[N(u, v, w)− f(x)],

which implies that

N(u, v, w)− f(x) + ρ−1RM(·,x)
ρ (z) = 0,

with z = P (g(x))−ρ[N(u, v, w)−f(x)], i.e. (z, u, v, w) is a solution of (J
M(·,x)
ρ -

POEP).

Conversely, let (z, x, u, v, w) be a solution of (J
M(·,x)
ρ -POEP), then

ρ[N(u, v, w)− f(x)] = −RM(·,x)
ρ (z) = P [JM(·,x)

ρ (z)]− z. (3.10)

From (3.9) and (3.10), we have

ρ[N(u, v, w)− f(x)] = P [J
M(·,x)
ρ {P (g(x))− ρ[N(u, v, w)− f(x)]}]

−P (g(x)) + ρ[N(u, v, w)− f(x)]

which implies that

P (g(x)) = P [JM(·,x)
ρ {P (g(x))− ρ[N(u, v, w)− f(x)]}]

and thus

g(x) = JM(·,x)
ρ {P (g(x))− ρ[N(u, v, w)− f(x)]},

i.e. (x, u, v, w) is a solution of (GIVLIP). �

4. An iterative algorithm and convergence analysis

First, we define the following concepts.
Definition 4.1. Let η : E × E → E be a single-valued mapping and let
T,A,B : E → CB(E∗) be three multi-valued mappings. A mapping N :
E∗×E∗×E∗ → E∗ is said to be (α, β, γ)-Lipschitz continuous, if ∃ α, β, γ > 0
such that

‖N(x1, y1, z1)−N(x2, y2, z2)‖ ≤ α‖x1 − x2‖+ β‖y1 − y2‖+ γ‖z1 − z2‖,

∀x1, x2, y1, y2, z1, z2 ∈ E.
Definition 4.2. A multi-valued mapping T : E → CB(E∗) is said to be
α-H-Lipschitz continuous, if ∃ α > 0 such that

H(Tx, Ty) ≤ α‖x− y‖, ∀x, y ∈ E.
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Lemma 4.1. ([13]) Let E be a complete metric space, T : E → CB(E) be a
set-valued mapping. Then for any given ε > 0 and any given x, y ∈ E, u ∈ Tx,
there exists v ∈ Ty such that

d(u, v) ≤ (1 + ε)H(Tx, Ty).

Lemma 4.2. ([9]) Let E be a real Banach space and J : E → 2E
∗

be the
normalized duality mapping. Then, for any x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,
for all j(x+ y) ∈ J(x+ y).

Using Lemma 3.1 and Nadler’s above results , we develop an iterative algo-
rithm for finding the approximate solution of (GIVLIP) as follows.

Iterative Algorithm 4.1. For any z0 ∈ E∗, x0 ∈ E, u0 ∈ T (x0), v0 ∈ A(x0)
and w0 ∈ B(x0), from (2.9), let

z1 = P (g(x0)− ρ[N(u0, v0, w0)− f(x0)].

Take z1 ∈ E∗, x1 ∈ E such that g(x1) = J
M(·,x1)
ρ (z1).

Since u0 ∈ T (x0), v0 ∈ A(x0) and w0 ∈ B(x0), by Nadlers Lemma 4.1 , there
exists u1 ∈ T (x1), v1 ∈ A(x1) and w1 ∈ B(x1) such that

‖u0 − u1‖ ≤ (1 + 1)H(T (x0), T (x1)),
‖v0 − v1‖ ≤ (1 + 1)H(A(x0), A(x1)),
‖w0 − w1‖ ≤ (1 + 1)H(B(x0), B(x1)),

where H is Hausdorff metric on CB(E). Let

z2 = P (g(x1)− ρ[N(u1, v1, w1)− f(x1)]

and take any x2 ∈ E such that

g(x2) = JM(·,x2)
ρ (z2).

Continuing the above process inductively, we can obtain the following:
For any z0 ∈ E∗, x0 ∈ E, u0 ∈ T (x0), v0 ∈ A(x0) and w0 ∈ B(x0), compute

the sequences {zn}, {xn}, {un}, {vn} and {wn} by iterative schemes such that

(i) g(xn) = J
M(·,xn)
ρ (zn); (4.1)

(ii) un ∈ T (xn), ‖un − un+1‖ ≤ (1 + 1
n+1 )H(T (xn), T (xn+1)), (4.2)

(iii) vn ∈ A(xn), ‖vn − vn+1‖ ≤ (1 + 1
n+1 )H(A(xn), A(xn+1)), (4.3)

(iv) wn ∈ B(xn), ‖wn − wn+1‖ ≤ (1 + 1
n+1 )H(B(xn), B(xn+1)), (4.4)

(v) zn+1 = P (g(xn)− ρ[N(un, vn, wn)− f(xn)], n = 0, 1, 2, · · · (4.5)

and ρ > 0 is a constant.

Theorem 4.1. Let E be a reflexive Banach space. Let T,A,B : E → CB(E∗)
be H-Lipschitz continuous mappings with Lipschitz constants λT , λA and λB,
respectively. Let N : E∗ × E∗ × E∗ → E∗ be (α, β, γ)-Lipschitz continuous
mapping. Suppose that P : X → X∗ is Lipschitz continuous with Lipschitz
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constant λP and strongly η−monotone operator with constants r > 0. Let f :
E → E∗ be a λf -Lipschitz continuous mapping , η : E ×E → E be τ -Lipschitz
continuous mapping, M : E×E → E∗ be such that for each fixed x ∈ E,M(·, x)
be P -η -monotone mapping, and g : E → E be (δ, σ)-relaxed cocoercive and λg-
Lipschitz continuous mapping. Suppose that there exists λ > 0 such that, for
each x1, x2, z ∈ E

‖JM(·,x1)
ρ (z)− JM(·,x2)

ρ (z)‖ ≤ λ‖x1 − x2‖, (4.6)

and,for ρ > 0 the following condition is satisfied:
h =

√
1− 2(δλg

2 − σ + λ2 + 1) > r−1
√

2λPλgτ

ρ < max{ rh−
√
2λPλgτ

mh+
√
2τ(αλT+βλA+γλB+λf )

, rm}
2σ − 2δλg

2 − 2λ2 − 1 > 0,

(4.7)

then there exist z ∈ E∗, x ∈ E, u ∈ T (x), v ∈ A(x) and w ∈ B(x) satisfying

(J
M(·,x)
ρ -POEP) and the iterative sequences {zn}, {xn}, {un}, {vn} and {wn}

generated by Algorithm 4.1 converge strongly to z, x, u, v and w, respectively.

Proof. From Algorithm 4.1, we have

‖zn+1 − zn‖ = ‖P (g(xn)− ρ[N(un, vn, wn)− f(xn)]

− P (g(xn−1)− ρ[N(un−1, vn−1, wn−1)− f(xn−1)]‖
≤ ‖P (g(xn)− P (g(xn−1)‖+ ρ‖N(un, vn, wn)

−N(un−1, vn−1, wn−1)‖+ ρ‖f(xn)− f(xn−1)‖.

(4.8)

By the Lipschitz continuity of P and g, we have

‖P (g(xn))− P (g(xn−1)‖ ≤ λP ‖g(xn)− g(xn−1)‖ ≤ λPλg‖xn − xn−1‖. (4.9)

By the (α, β, γ)-Lipschitz continuity of N and H-Lipschitz continuity of T,A
and B,we have

‖N(un, vn, wn)−N(un−1, vn−1, wn−1)‖
≤ α‖un − un−1‖+ β‖vn − vn−1‖+ γ‖wn − wn−1‖

≤ α(1 +
1

n+ 1
)H(T (xn), T (xn−1)) + β(1 +

1

n+ 1
)H(A(xn), A(xn−1))

+ γ(1 +
1

n+ 1
)H(B(xn), B(xn−1))

≤ [αλT (1 +
1

n+ 1
) + βλA(1 +

1

n+ 1
) + γλB(1 +

1

n+ 1
)]‖xn − xn−1‖.

(4.10)
Combining (4.9)-(4.10) with (4.8), we obtain

‖zn+1 − zn‖ ≤
[
λPλg + αλT ρ(1 +

1

n+ 1
) + βλAρ(1 +

1

n+ 1
)

+ γλBρ(1 +
1

n+ 1
) + ρλf

]
× ‖xn − xn−1‖.

(4.11)
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By using Theorem 2.1 and (δ, σ)-relaxed cocoercive of g, we have

‖xn − xn−1‖2

= ‖JM(·,xn)
ρ (zn)− JM(·,xn−1)

ρ (zn−1)− [g(xn)− xn − (g(xn−1)− xn−1)]‖2

≤ ‖JM(·,xn)
ρ (zn)− JM(·,xn−1)

ρ (zn−1)‖2

− 2〈g(xn)− xn − (g(xn−1)− xn−1), j(xn − xn−1)〉

≤ 2‖JM(·,xn)
ρ (zn)− JM(·,xn−1)

ρ (zn)‖2

+ 2‖JM(·,xn−1)
ρ (zn)− JM(·,xn−1)

ρ (zn−1)‖2

− 2〈g(xn)− xn − (g(xn−1)− xn−1), j(xn − xn−1)〉

≤ 2

(
τ

r −mρ

)2

‖zn − zn−1‖2 + 2(δλg
2 − σ + λ2 + 1)‖xn − xn−1‖2,

which implies that

‖xn − xn−1‖2 ≤
2

1− 2(δλg
2 − σ + λ2 + 1)

(
τ

r −mρ

)2

‖zn − zn−1‖2, (4.12)

using (4.11), (4.12) becomes

‖zn+1 − zn‖

≤

√
2τ
[
λPλg + αλT ρ(1 + 1

n+1 ) + βλAρ(1 + 1
n+1 ) + γλBρ(1 + 1

n+1 ) + ρλf

]
(r −mρ)

√
1− 2(δλg

2 − σ + λ2 + 1)

× ‖zn − zn−1‖,

i.e.,

‖zn+1 − zn‖ ≤ θn‖zn − zn−1‖,

where

θn=

√
2τ
[
λPλg + αλT ρ(1 + 1

n+1 ) + βλAρ(1 + 1
n+1 ) + γλBρ(1 + 1

n+1 ) + ρλf

]
(r −mρ)

√
1− 2(δλg

2 − σ + λ2 + 1)
.

Letting θ =
√
2τ [λPλg+ρ(αλT+βλA+γλB+λf )]

(r−mρ)
√

1−2(δλg
2−σ+λ2+1)

, it follows that θn → θ as n → ∞.

From (4.7), we have θ < 1, and consequently {zn} is a Cauchy sequence in
E∗. Since E∗ is a Banach space, there exists z ∈ E∗ such that zn → z as
n→∞.From (4.12), we know that the sequence {xn} is also a Cauchy sequence
in E. Therefore, there exists x ∈ E such that xn → x as n → ∞. Since the
mappings T,A and B are H-Lipschitz continuous, it follows from (4.2)-(4.4)
that {un}, {vn} and {wn} are also Cauchy sequences, we can assume that
un → u, vn → v and wn → w. Since P, g,N, f are continuous and by (v) of
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Algorithm 4.1, it follows that

zn+1 = P (g(xn)− ρ[N(un, vn, wn)− f(xn)]

→ z = P (g(x)− ρ[N(u, v, w)− f(x)], (n→∞)
(4.13)

JM(·,x)
ρ (zn) = g(xn)→ g(x) = JM(·,x)

ρ (z) (n→∞). (4.14)

By (4.13), (4.14), and Lemma 3.2, we have

N(u, v, w)− f(x) + ρ−1[I − P (JM(·,x)
ρ (z))] = 0.

Finally, we prove that u ∈ T (x), v ∈ A(x) and w ∈ B(x). In fact, since
un ∈ T (xn) and

d(un, T (x)) ≤ max

{
d(un, T (x)), sup

q1∈T (x)

d(T (xn), q1)

}

≤ max

{
sup

q2∈T (xn)

d(q2, T (x)), sup
q1∈T (x)

d(T (xn), q1)

}
= H(T (xn), T (x)).

We have

d(u, T (x)) ≤ ‖u− un‖+ d(un, T (x))

≤ ‖u− un‖+H(T (xn), T (x))

≤ ‖u− un‖+ λT ‖xn − x‖ → 0 as n→∞,

which implies that d(u, T (x)) = 0. Since T (x) ∈ CB(E∗), it follows that
u ∈ T (x). Similarly, we can prove that v ∈ A(x) and w ∈ B(x). By Lemma
3.2, the required result follows. �

Remark 4.2. The Theorem 4.1 extends and improves some results from [3], [6],
[10], [9], [14] in several aspects.
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