DOI QR코드

DOI QR Code

Sulfur Isotope Composition of Seafloor Hydrothermal Vents in the Convergent Plate Boundaries of the Western Pacific: A Role of Magma on Generation of Hydrothermal Fluid

서태평양 지판소멸대의 해저열수분출구에서 관찰되는 황동위원소 조성변화: 열수 생성의 다양성과 마그마의 역할

  • Kim, Jong-Uk (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Moon, Jai-Woon (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Lee, Kyeong-Yong (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Lee, In-Sung (School of Earth and Environmental Sciences, Seoul National University)
  • 김종욱 (한국해양연구원 심해해저자원연구부) ;
  • 문재운 (한국해양연구원 심해해저자원연구부) ;
  • 이경용 (한국해양연구원 심해해저자원연구부) ;
  • 이인성 (서울대학교 지구환경과학부)
  • Received : 2012.03.05
  • Accepted : 2012.04.19
  • Published : 2012.04.28

Abstract

Seafloor hydrothermal system occurs along the volcanic mid-ocean ridge, back-arc spreading center, and other submarine volcanic regions. The hydrothermal system is one of the fundamental processes controlling the transfer of energy and matter between crust/mantle and ocean; it forms hydrothermal vents where various deepsea biological communities are inhabited and precipitates metal sulfide deposits. Hydrothermal systems at convergence plate boundaries show diverse geochemical properties due to recycle of subducted material compared to simple systems at mid-ocean ridges. Sulfur isotopes can be used to evaluate such diversity in generation and evolution of hydrothermal system. In this paper, we review the sulfur isotope composition and geochemistry of hydrothermal precipitates sampled from several hydrothermal vents in the divergent plate boundaries in the western Pacific region. Both sulfide and sulfate minerals of the hydrothermal vents in the arc and backarc tectonic settings commonly show low sulfur isotope compositions, which can be attributed to input of magmatic $SO_2$ gas. Diversity in geochemistry of hydrothermal system suggests an active role of magma in the formation of seafloor hydrothermal system.

해저열수시스템은 중앙해령이나 후열도확장대와 같은 해저화산대를 따라 생성된다. 해저열수시스템은 지각-맨틀과 해양의 에너지와 물질이 교환되는 장으로 이를 통해 지각과 해수의 조성이 변화하며, 해저면에 열수분출구를 침전시켜 열수생태계를 형성하고 금속광상이 만들어진다. 상대적으로 단순한 중앙해령과 달리 지판소멸지역의 해저열수시스템은 섭입되는 물질의 재순환과정에서 다양한 특성이 나타난다. 황동위원소 조성은 이러한 열수시스템의 다양성을 평가하는데 유용하다. 이 논문에서는 서태평양의 지판소멸대에서 발견된 열수분출 지역에서 채취된 열수분출구 시료의 황동위원소 조성변화를 살펴보고 이들 환경에서 열수생성의 다양성을 일으키는 요인을 고찰하였다. 지판소멸대의 열수분출구는 황화광물과 황산염광물 모두 낮은 황동위원소 조성을 갖는 것이 특징이며, 이는 마그마로부터 공급된 $SO_2$ 기체의 유입으로 해석된다. 황동위원소 조성 변화를 포함한 열수시스템의 다양성은 열수시스템 생성과정에서 마그마의 적극적인 역할을 지시한다.

Keywords

References

  1. Alt, J.C., Shanks III, J.C. and Jackson, M.C. (1993) Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett., v.119, p.477-494. https://doi.org/10.1016/0012-821X(93)90057-G
  2. Alt, J.C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal system. In Humphris, S.E. et al. (eds.), Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington, p.85-114.
  3. Beaulieu, S.E. (2010) InterRidge Global Database of Active Submarine Hydrothermal Vent Fields: prepared for InterRidge, Version 2.0. World Wide Web electronic publication. http://www.interridge.org/IRvents.
  4. Butterfield, D.A., Jonasson, I.R., Massoth, G.J., Feely, R.A., Roe, K.K., Embley, R.E., Holden, J.F., McDuff, R.E., Lilley, M.D. and Delaney, J.R. (1997) Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A. v.355, p.369-386. https://doi.org/10.1098/rsta.1997.0013
  5. de Ronde, C., Hannington, M., Stoffers, P., Wright, I., Ditchburn, R., Reyes, A., Baker, E., Massoth, G., Lupton, J., Walker, S., Greene, R., Soong, C., Ishibashi, J., Lebon, G., Bray, C. and Resing, J. (2006) Evolution of a submarine magmatic-hydrothermal system: Brother Volcano, Southern Kermadec Arc, New Zealand. Econ. Geol., v.100, p.1097-1133.
  6. Drummond, S.E. and Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol., v.80, p.126-147. https://doi.org/10.2113/gsecongeo.80.1.126
  7. Embley, R.W., Baker, E.T., Butterfield, D.A., Chadwick, W.W., Lupton, J.E., Resing, J.A., de Ronde, C.E.J., Nakamura, K., Unnicliffe, V., Dower, J.F. and Merle, S.G. (2007) Exploring the submarine ring of fire: Mariana Arc-Western Pacific. Oceanography, v.20, p.68-79. https://doi.org/10.5670/oceanog.2007.07
  8. Gamo, T., Okamura, K., Charlou, J.-L., Urabe, T., Auzende, J.-M., Ishibash, J., Shitashima, K., Chiba, H. and Shipboard Scientific Party of the Manus Flux Cruise, Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea, Geology, v.25, p.139-142. (1997) https://doi.org/10.1130/0091-7613(1997)025<0139:AASRHF>2.3.CO;2
  9. German, C.R. and Von Damm, K.L. (2004) Hydrothermal processes. In Turekian, K.K. and Holland, H.D. (eds.) Treatise on Geochemistry, v.6, The Oceans and Marine Geochemistry. Elsevier, p.181-222.
  10. Hannington, M.D., de Ronde, C.E.J. and Petersen, S. (2005) Seafloor tectonics and submarine hydrothermal systems. In Hedenquist, J. et al. (eds.), 100th Anniversary Volume of Economic Geology
  11. Herzig, P.M., Hannington, M.D. and Arribas Jr, A. (1998) Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Miner. Deposita, v.33, p.226-237. https://doi.org/10.1007/s001260050143
  12. Ishibashi, J. and Urabe, T. (1995) Hydrothermal activity related to arcbackarc magmatism in the Western Pacific. In Taylor, B. (ed.) Backarc Basins: Tectonics and Magmatism. Plenum Press, New York, p.451-495.
  13. Janecky, D.R. and Shanks III, J.C. (1988) Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones. Can. Mineral, v.26, p.805-825.
  14. Kim, J., Lee, I. and Lee, K.Y. (2004) S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. J. Geophys. Res., v.107, B12210.
  15. Kim, J., Lee, I., Halbach, P., Lee, K.Y., Ko, Y.T. and Kim, K.H. (2006) Formation of hydrothermal vents in the North Fiji Basin: Sulfur and lead isotope constraints. Chem. Geol., v.233, p.257-275. https://doi.org/10.1016/j.chemgeo.2006.03.011
  16. Kim, J., Ko, Y.T., Son, S.K. and Lee, K.Y. (2007) Hydrothermal activity in back-arc and arc caldera in the NE Lau Basin (abstract). Spring meeting of geological sciences of Korea, Abstract with program, p.486-488.
  17. Kim, J., Son, S.K., Son, J.W., Kim, K.H., Shim, W.J., Kim, C.H. and Lee, K.Y. (2009) Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau Basin. Geochemical Journal, v.43, p.1-13. https://doi.org/10.2343/geochemj.0.0164
  18. Kim, J., Lee, K.Y. and Kim, J.H. (2011) Metal-bearing molten sulfur collected from a submarine volcano: Implications for vapor transport of metals in seafloor hydrothermal systems. Geology, v. 39. p. 351-354. https://doi.org/10.1130/G31665.1
  19. Luders, V., Pracejus, B. and Halbach, P. (2001) Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem. Geol., v.173, p.45-58. https://doi.org/10.1016/S0009-2541(00)00267-9
  20. Martinez, F., Taylor, B., Baker, E.T., Resing, J.A. and Walker, S.L. (2006) Opposing trends in crustal thickness and spreading rate along the back-arc Eastern Lau Spreading Center: Implications for controls on ridge morphology, faulting, and hydrothermal activity. Earth Planet. Sci. Lett., v.245, p.655-672. https://doi.org/10.1016/j.epsl.2006.03.049
  21. Martinez, F. and Taylor, B. (2006) Modes of crustal accretion in back-arc basins: Inferences from the Lau Basin. In Christie, D.M. et al., (eds.) Back-arc spreading systems: Geological, biological, chemical, and physical interactions. Geophysical Monograph Series 166, p.5-30. https://doi.org/10.1029/166GM03
  22. McKibben, M.A. and Eldridge, C.S. (1990) Radical sulfur isotope zonation of pyrite accompanying boiling and epithermal gold deposition: a SHRIMP study of the Valles Caldera, New Maxico. Econ. Geol., v.85, p.1917-1925. https://doi.org/10.2113/gsecongeo.85.8.1917
  23. Miyabe, S., Butterfield, D. A., Roe, K. K., Ishibashi, J., Embley, R. W., Chiba, H. and Nakamura, K. (2004) Sulfur Isotope Geochemistry of Mariana Arc Hydrothermal Systems. American Geophysical Union, Fall Meeting 2004, abstract #V41B-1387.
  24. Nakamura, K.T., Butterfiled, B., Resing, D.A., Chadwick, J. and Embley, W.W. (2009) Intermediate products of sulfur disproportional reaction and their physical role in effusive to explosive submarine volcanic activity. Eos, Transactions, American Geophysical Union, v.90 (52), Abstract V51D-1715.
  25. Ohmoto, H. and Lasaga, A.C. (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta, v.46, p.1727-1745. https://doi.org/10.1016/0016-7037(82)90113-2
  26. Peter, J.M. and Shanks III, W.C. (1992) Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA. Geochim. Cosmochim. Acta, v.56, p.2025-2040. https://doi.org/10.1016/0016-7037(92)90327-F
  27. Ramirez-Llodra E., Shank, T.M. and German, C. R. (2007) Biodiversity and biogeography of hydrothermal vent species: Thirty years of discovery and investigations. Oceanography, v.20, p.30-41.
  28. Reed, M.H. and Spycher, N.F. (1985) Boiling, cooling, and oxidation in epithermal systems: A numerical modeling approach. Rev. Econ. Geology, v.2, p.249-272.
  29. Rees, C.E., Jenkins, W.J. and Monster, J. (1978) The sulfur isotopic composition of ocean water sulfate. Geochim. Cosmochim. Acta, v.42, p.377-381. https://doi.org/10.1016/0016-7037(78)90268-5
  30. Rye, R. (2005) A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem. Geol., v.215, p.5-36. https://doi.org/10.1016/j.chemgeo.2004.06.034
  31. Sakai, H., Des Maris, D.J., Ueda, A. and Moore, J.G. (1984) Concentrations and isotope ratios of carbon, nitrogen, and sulfur in ocean-floor basalts and volcanic gases at Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta, v.48, p.2433-2441. https://doi.org/10.1016/0016-7037(84)90295-3
  32. Seal, R.R. II (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, v.61, p.633-677. https://doi.org/10.2138/rmg.2006.61.12
  33. Seyfried, W.E. and Bischoff, J.L. (1981) Experimental seawater-basalt interaction at $300^{\circ}C$, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta, v.45, p.135-147. https://doi.org/10.1016/0016-7037(81)90157-5
  34. Seyfried, W. E. and Ding, K. (1995) Phase equilibria in subseafloor hydrothermal system: A review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges. In Humphris, S.E. et al. (eds.) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, p.248-272.
  35. Shanks, W.C., III, Bhlke, J.K. and Seal, R.R.I. (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms. In Humphris, S.E. et al. (eds.) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, p.194-221.
  36. Shanks, J.C., III (2001) Stable isotopes in seafloor hydrothermal systems. In Valley, J.W. and Cole, D.R. (eds.) Stable isotope geochemistry. Mineralogical Society of America and Geochemical Society, p.469-525.
  37. Teagle, D.A.H., Alt, J.C., Chiba, H. and Halliday, A.N. (1998) Dissecting an active hydrothermal deposit: the strontium and oxygen isotopic anatomy of the TAG hydrothermal mound-anhydrite. Proc. Ocean Drill. Program Sci. Results, v.158, p.129-142.
  38. Woodruff, L.G. and Shanks, J.C. III (1988) Sulfur isotope study of chimney minerals and vent fluids from $21^{\circ}N$, East Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction. J. Geophys. Res., v.93(B5), p.4562-4572. https://doi.org/10.1029/JB093iB05p04562
  39. Yang, K. and Scott, S.D. 2006, Magmatic fluids as a source of metals in seafloor hydrothermal systems. In Christie, D.M. et al., (eds.) Back-arc spreading systems: Geological, biological, chemical, and physical interactions. American Geophysical Union, p.163-184.